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ABSTRACT 

We elassify atiine, not necessarily commutative, n-covers B of commutative 
K-algebras A using data triples (A, M, a )  consisting of the algebra A, a free 
A-module M of rank n -  1, and an associative, unitary trace-zero structure 
constant tensor a. We construct a versal deformation space for the deformations 
of a K-algebra B,, as a section of the completion at the tensor ao of Bo of the 
structure-constant scheme C.. In order to obtain concrete information about 
the algebraic structure of C., we show how this algorithm has been im- 
plemented up to order 2. Finally, we globalize and geometricize the construc- 
tion, getting a one-to-one correspondence between isomorphism classes of 
global n-covers and isomorphism classes of triples (~7~,, ~, ~t), where ~ ,  is the 
structure sheaf of a commutative integral scheme Y, ~ is a locally free sheaf of 
~ -modules  of rank n -  1, and a is a global section of a sheaf 5~c'~'_~(~) of 
structure constant tensors. We give examples in dimensions n = 2,3, and 4 to 
show how the structure of 5~_~(~') can be analyzed as a functor of ~ using 
information about C, obtained as above. 
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§0. Introduction 

T h i s  p a p e r  c o n t i n u e s  a v e r y  t r a d i t i o n a l  l i ne  o f  r e s e a r c h ,  t h e  c l a s s i f i c a t i o n  o f  

n - d i m e n s i o n a l  a l g e b r a s  o v e r  a n  a l g e b r a i c a l l y  c l o s e d  f ie ld  K,  b u t  i t  is v i e w e d  in  
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the light of more modern developments, the Schlessinger deformation theory 

and the non-commutative algebraic geometry of Artin and Schelter [1]. 

Our basic object of study is what we call an affine n-cover, an algebra B over a 

commutative K-algebra A, which is a free A-module of rank n. Our first main 

result is a generalization for all n of the "double cover data" in classical 

algebraic geometry. Given an A-module M of rank n -  1, we introduce a 

functor ~C°._I(M)A which consists of all structure constant tensors c~ which put a 

multiplication on eoA @ M in such a way that M is the canonical submodule of 

trace zero elements under left multiplication. The attine version of the theorem 

then states 

THEOREM 1'. The isomorphism classes of affine n-covers are in one-to-one 
correspondence with the isomorphism classes of data triples (A, M, t~). 

In the final sections of the paper we replace the ring A by a sheaf of rings over 

a (commutative) integral scheme Y of finite type, and we replace the free 

A-module M by a locally free sheaf ~ on Y of rank n - 1. After sheafifying the 

functor ~9~f°~_~ and letting a be a global section of ~(o ,(~), we then get our global 

version of the result. 

THEOREM 3. The isomorphism classes of global n-covers are in one-to-one 
correspondence with the isomorphism classes of data triples (~v, ~, a). 

This theorem is only interesting for general n insofar as we can obtain 

information about 5~,_~(~), and this is actually just a restatement of the classical 

problem of classifying the irreducible components of the structure constant 

variety (7,. Thus in the middle section of the paper we apply the Schlessinger 

deformation theory to give a parameter space for the deformations of an 

algebra. This construction has been implemented on a microcomputer out to 

second order terms, and we work out one example in detail to show that the 

calculation is not only feasible but actually worth doing. The author has already 

used the program in various contexts, usually for generating data on which to 

conjecture general results about the classification and deformation of n- 

dimensional algebras. 

As final applications, we give globalized parametrizations of the semi-rigid 

family in dimension 4 and the Kronecker component in all dimensions. We also 

give a geometric interpretation of the global n-covers in Theorem 3, using the 

maximal spectrum as the underlying geometric object. 
The material is divided into sections as follows: §1 contains the definitions of 

the basic functors to be used, the introduction of the trace module, and the attine 
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classification theorem. In §2, the Schlessinger deformation theory is applied to 

construct the versal deformation space and relate it to the structure constant 

tensor scheme C, defined in § 1. In the interest of accessibility to non-algebraic 

geometers, this section has been left optional. In §3 we translate the theoretical 

material in §2 into an implementable algorithm, and work out one example in 

detail. The more aigebrogeometrical parts of the argument are relegated to 

Appendix 1. In §4 we return to algebraic geometry with the global classification 

theorem 3, and the calculation of birational parametrizations of the semi-rigid 

family in dim 4 and the Kronecker component. §5 contains the geometric 

interpretation of the construction of higher order neighborhoods of the versal 

deformation space, and Appendix 2 discusses the implementation of the 

algorithm in light of the theorem in Schaps [10] about the deformability of 

idempotents. 

§1. The local theory of n-covers 

Let Y be an integral, noetherian scheme over an algebraically closed field K. 

That is to say, Y is a topological space supporting a structure sheaf ~y of 

K-algebras such that each 0~. (U) is a noetherian integral domain. Suppose that 

n is an integer, prime to the characteristic of K if char K ~  0. In algebraic 

geometry there is a very rich theory of 2-covers, i.e., schemes X with p: X---, Y 

such that the structure sheaf (?× is a sheaf of ~ ,  modules which is locally free of 

rank 2. We wish to generalize some parts of this theory, specifically, those 

dealing with formal deformations and with classification data, to the case where 

the multiplication in the sheaf ~Tx is no longer required to be commutative. 

The Noetherian and integrality hypotheses are intended to avoid difficulties in 

globalization, and will not enter into the local theory we develop now. 

DEFINITION. Let A be a commutative algebra over K, an algebraically closed 
field. Let n be prime to the characteristic of K if char K ~  0. An affine n-cover B 
of A will be an A-algebra B which is free as an A-module. The fibers 

B @AA/m of B over the maximal ideals m of A will be called members of the 

family defined by B. 

Since B is free as an A-module, the action of A on the identity of B 

determines an embedding p: A ~ B. Since B is an A-algebra, the image of A 

lies in the center of B. Thus it is irrelevant whether we regard B as a left or a 

right A-module. We now fix this underlying A-module, so that we will be able to 

concentrate on the variations in the algebra structure. 
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DEFINITION. Let V0 be a K-vector space of dimension n with designated 

basis e0 . . . . .  e,-1. For any K-algebra A, define 

V ( A ) =  Vo@ A. 

If A is understood, we will simply write V for V(A) .  Let (1o C Vo be the 

(n-1)-dimensional vector space generated by e~ . . . . .  e,-t, and let f ' ( A ) =  

f'0®A. 
To assign a bilinear multiplication to V is to choose an A-module 

homomorphism 

p E HomA (V, EndA (V)). 

Let V* = Hom(V, A) be the dual module. Then for any A-module M, 

HomA (V, M)--~ V* @ M; 

since V is a free A-module, 

HomA (V, Enda (V))--~ V* @EndA (V) 

= V* ~ HomA (V, V) 

V * ®  V*® V. 

Let us continue to denote by eo . . . . .  e,_, the images of the basis elements of Vo 

under the natural embedding of V0 into the A-module V. Let e* . . . .  * , e,-i be the 

elements of the dual basis for V*, defined as functions on V by the property that 
e*(ej)= 8~j. Here, and throughout the paper, 8~ represents the Kronecker 
8-function, and equals 1 when i =  j, but equals 0 when i~  j. The tensors 
e*(~e*(~ep  form a basis for V * ~ ) V * ( ~  V, and thus, via the isomorphism 

described in the previous paragraph, for HomA (V, EndA (V)). A tensor o~ = 
E a~ie~ p * @ e*@j ep corresponds to a multiplication 

(1) e, ej ~ " • = a i i e p .  

If p ~ Homa (V, EndA (V)) is the corresponding homomorphism, we can think 

of p(ei) as being represented with respect to the given basis by a matrix [a~] with 

rows indexed by p and columns indexed by j. 
If we have an A-multiplication structure on V and we change the A-module 

basis, we get an isomorphic A-algebra. Conversely any isomorphism of A- 

multiplication structures on V is completely determined by the induced A- 

module isomorphism. Thus the isomorphism classes of A-algebra structures 
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correspond to the orbits in V*@ V*@ V of the action of elements Q 

Aura (V) via Q* @ Q* @ Q, where O * E AutA (V*) is the element dual to Q. If 

Q can be represented in a given basis by a matrix M then Q* is represented in 

the dual basis by rM-~. 

In order to make our A-multiplication structure associative and unitary, we 

need to restrict our attention to those tensors (a'ij) for which the corresponding 

multiplication is associative and has an identity. In fact, we will go further and 

require that the identity be the basis element e0. In this latter restriction we are 

not following the standard modern treatment of algebra structures (Gabriel [2], 

Happel [3], Mazzola [7]), but the choice of identity is necessary for our method. 

Since we want to give the algebra conditions in a basis-free form, the only way to 

ensure the existence of an identity is to specify one fixed element to be the 

identity and specify that it multiplies the other elements of the algebra as an 

identity element should. 

We wish to describe these conditions by polynomial equations on the 

coordinates (a~) of a tensor in V*@ V*@ V. The requirement that e0.ei = 

e~ • e0 = e~ gives 

P P 
(2) a0j = 6pi and a~o = 6,p. 

The associativity, (e~ej)ek = e~ (e~e~), gives equations 

n - I  n - I  

(3) E ' " - a ira fk E t q a ika it = O. 
t = 0  r = 0  

In order to free ourselves of the choice of a basis, we define a bilinear form 

( , ): ( v * ®  v * ®  v ) ® ( v * ®  v * ®  v ) ~  v * ®  v * ®  v * ®  v, 

(v~ ® v~ ® v3, v*~ ® v~ ® v~) = v :(v~)v~ ® v~ ® v* ® v~ 

- v~(v3)v'~ ® v~ ® v*,_ ® v~. 

If a and/3 are two tensqrs, written as (alr) and (b~k) with respect to some choice 
of basis eo . . . . .  e,. of V, then with respect to that same basis, (a,/3) will have 

coordinates 
n - I  

q t q 
C ilk E t q = ( a , j b , k - -  ajkb,). 

Equations (3) are then equivalent to the condition (a, a ) =  0. 

DEFrNmON. We define an (affine) algebraic group to be a representable 

functor ~d from K-algebras to groups, as in [15]. The groups we need will all be 

algebraic subgroups of 
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~ (A)  = Aura (V) = Auta (V0@ A). 

DEFINITION. If Q ~ A u t A ( V ) ,  let O * ~ A u t A ( V * )  be the dual auto- 

morphism Q*v*(w)=v*(Q-'w). Auta(V)  acts on any tensor algebra 

(@,V*)@(@sV)  via (@,Q*)@(@~Q), where 

(®, O*)® (®s O)(v~ ®' ."  ® v*, ® v, ® ' . .  ® v~) 

= O * v * N . - . @ O * v * N O v ,  N . . . N O v s .  

Let Q o a denote this action when a ~ V * ®  V*@ V. 

LEMMA 1. All a e V * @ V * ® V  with ( a , a ) = 0  form a subset 4 
V * ®  V * ®  V which is invariant under the action of AutA (V). 

PROOF. One can cite, as a one-line proof, the fact that the associativity of an 

algebra is independent of choice of basis. To give a direct proof via tensor 

algebras we note that O*v*(Qw)= v*w. Thus 

(Qo ~ a:je~**@e*®e,, Qo 2 a,ke,*,®e*®eq) 
i@t =11 t'.k,q =D 

= ~ c;kQo(e*Ne*Ne*~Ne.). 
i j ,  k,q =0 

If (t~,a} =0,  then (Qoa, Qoa}=O. 

DEFINITION. Let the algebraic group of arlene automorphisms of V be given 

by 

~ ( A )  = {O E Aut,~ (V) I O(eo) -- eo}. 

This algebraic group M contains a normal subgroup 3 of translations by e0. 

That is to say, the elements of ~-(A) correspond to A-linear automorphisms of 

V given by sending e~ to e~ - eoa, for a~ ~ A, and i = 1 . . . . .  n - 1. The group M 

contains another algebraic subgroup G such that 0 ( A )  corresponds to the 

A-linear automorphisms of V which leave eo fixed and map the submodule 17 

onto itself. Then ~ is in fact a semidirect product of ~" by O. This decomposition 

can be checked by taking a matrix representation of s~ and writing the matrices 

in block form with respect to the decomposition of V as eoA (~ (1. 
The identity equations (2), written in basis free form, are given by 

eo" v = v • eo = v, for all v ~ V. 

LEMMA 2. This property is invariant under the action of ~ ( A ) =  

Aft Aut~ (V). 
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PROOF. After acting by Q ~ AutA (V), this condition becomes 

Q(eo)" O(v)= O(V) .  Q(eo)= O(v), Vv ~ V. 

If Q ~ M(A) then Q(eo) = eo, and since Q is a bijection, we get the desired 

condition. 

DEFINmON. For any K-algebra A, let 

~, (A)C V * ( ~ V * ( ~ V  

be the set ot all tensors satisfying conditions (2) and (3). 

Let c = (c~) be a set of indeterminates for i, j, p = 0 . . . . .  n - 1 .  D E F I N I T I O N .  

Let 
P P 

R.  = K[cl/((c, c), Coj- ~jp, c ,0 -  8,p) 

where 8 is the Kronecker delta function; C. = Spec(R.) is called the variety of 

structure constants. 

THEOREU 1. (~. (A) is a representable functor, represented by R.,  and the 
isomorphism classes of affine n-covers correspond to the orbits of ¢¢. (A ) under the 

action of M(A ). 

PROOF. We identify a tensor a ~ %'. (A) with the homomorphism R. ~ A 
P P given by c i i~ aii- The homomorphism is well-defined since the coordinates (a ~P) 

of a satisfy the defining equations of R.. Conversely, any homomorphism of R. 

into A determines a tensor a ~ ~ (A). 
Any affine n-cover over A has an underlying A-module isomorphic to V. 

Thus in order to classify the isomorphism classes of affine n-covers, it suffices to 

consider only A-algebras B whose underlying A-module is V itself. 

Suppose, first, that B and B' are isomorphic A-algebra structures on V, with 

structure constant tensors a (a~) and a ' =  'P = (a~i). The A-algebra isomorphism 

from B to B' induces an A-linear automorphism Q of V, sending the identity eo 

to Co. Thus Q E M(A). Let us represent the multiplication in B by • and the 

multiplication in B'  by *. Since we have an A-algebra isomorphism, e~.ej = 
P p a~jep implies that Q(e~)*Q(ej)=Ea,iQ(e~). Thus we have two different 

representations for a '  with respect to two different bases, 

'~ * e ~ ® e ~  

E p , * = a,iQ ( e i ) ( ~ Q * ( e * ) ~ Q ( % ) .  
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The second sum is, by definition, Q o or, so a '  lies in the orbit of a under the 

action of M(A). 
Conversely, let ~ be any element of fi, (A), and Q any element of M(A). By 

Lemmas 1 and 2, Qoa is also an element a'Ef i , (A) .  Let B, B' be the 

A-algebra structures on V corresponding to a and a' .  The representation given 

above of a '  in the basis Q(eo),...,Q(e,_~) shows that the A-module 

homomorphism Q induces an isomorphism between B and B'. 

For any affine n-cover, not necessarily with underlying A-module V, we 

choose an A-module isomorphism between its A-module and V in order to 

associate to it an orbit of structure constant tensors. If we had chosen a different 

A-module isomorphism, the two isomorphisms would have differed by an 

auto_morphism of V. Thus, by what we have just proven, both isomorphisms 

would have given the same orbit, and the mapping from isomorphism classes of 

affine A-covers to orbits of fig, (A) is thus well-defined and bijective. Q.E.D. 

DEFINITION. The n-fold point is the affine scheme whose underlying algebra 

is the unique local radical square zero algebra 

K [ x l ,  . . . , x o - , l / ( x ,  . . . . .  x . - , L  

REMARK 1. The n-fold point lies in the closure of every orbit of C. as a 

specialization at h = 0 of the family of automorphisms of V given by multiplying 
every element of 17' by the non-zero scalar h-~. Thus the orbit of the n-fold point 

is the unique closed orbit in C.. 

REMARK 2. The history of C,. C, has been studied for over a hundred years, 

though not necessarily in the detail it deserves. We review what is known. The 

commutative algebras are always contained in a single irreducible component 

with an open orbit corresponding to the semisimple commutative algebra, which 

is a product of n copies of the underlying field K. For n = 2, (?2 is a plane 

containing a quadric which is the orbit of the 2-fold point. For n = 3, (?3 has two 

components, the commutative component of dimension 6 which is an affine 

space, and a second component of dimension 3, also an affine space, whose open 

orbit corresponds to the algebra of upper triangular 2 x 2 matrices. For n = 4, 5 it 

is known which orbits are contained in the closures of which other orbits and 

thus what are the irreducible components. For n = 4 there are five irreducible 

components (Gabriel [2]) and for n = 5 there are ten (Happel [3], Mazzola [7]). 

For n = 6 there is an old list of the algebras (Voghera [14]) probably containing 

errors and not organized by specialization properties. 
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The algorithms described in §3 of this paper are intended to permit a closer 

study of the sturcture of Cn as an algebraic scheme: the nature of its singularities 

and the way in which the orbits fit together. We hope to give a complete analysis 
of the algebraic structure of C4 in another work, and in the meantime we will 

bring two examples from (?4 in the course of this paper. 
We return now to the theoretical discussion. Although the functor ~, (A) is 

quite satisfactory for studying the local theory, the globalization in §4 requires 

that we allow variation in the underlying A-module, or, more precisely, in the 

module 17 complementary to the identity. In order to choose such a complemen- 

tary module in a canonical way, we will then resort to the trace map. 

DEl:INrrtos. Let ~;~ be the category of pairs (A, N) where A is a K-algebra 

and N is a free A-module of rank 1. A morphism (f, 0) from (A, N) to (A', N') 

will consist of an A-algebra homomorphism /: A---~A' and an A'-module 

isomorphism O: N @A A'--~ N'. Every such morphism factors as 

(A, N) (t, id~ (A', N QA A') (i~.o~ (A', N'). 

DEFINrnoN. Let us denote eoK QK A by eoA. For any A-module M of rank 

n -  1, we denote by M the rank n A-module eoA G M. This determines a 

functor H,: ~n-1 ~ ~:, given by Hn (A, M) = (A, M). In particular, 

H~ (A, ~'(A)) = (A, V(A )). 

DEFINITION. For any (A, M) ~ ~:n-1, define 

~n-,(M)A C M* @ M* (~ M 

to be the set of all tensors a satisfying the conditions 

(4) (a ,  = 0, 

(5) eo" v = v • e0 = v, for all v E M, with respect to the multiplication given by a. 

If ([, 0): (A, M)---~(A', M') is a morphism in @~_~, then we get an induced 

morphism 

(.f, O): ( M ~ A ' ) * ~ ( M ~ A ' ) * ~ ( M ~ A ' ) - - - ~ M ' * ~ M ' * ~ M ' .  

If 0 = id, we will denote this by f, and if f = id we will denote this by 0. We set 

~-~(0)t  = (f, 0), restricted to ~,-~(M)A. 

CLAIM. ~,-,(M)A is a functor. 

If 0: Mt ~ M2 is an A-module isomorphism, then O: 5~,_I(M~)A--~ ~n-~(M2)A 

is obviously a bijection. The functoriality of X.-I(M)A with respect to A-algebra 
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homomorphisms f: A--~ A'  follows from the functoriality of 

~/'.-,((/(A))A = cO,(A). 

The verifications are standard. 
In Section 4, we will generalize this functor so that A can be replaced by a 

sheaf ~v of K-algebras, and M can be replaced by a locally free ~v module $ of 

rank n - 1. However, in order to make $ an object which can be recovered in a 

canonical way from the resulting algebra structure, we first replace the functor :7/" 

by a subfunctor :go defined by using the trace map. 

Letting B be any n-cover of A with additive A-module V, the left 

multiplication gives an algebra representation 

p: B--~ EndA (V). 

If we follow p by the trace map, we get an A-module homomorphism 

Trp:  V--->A. 

This determines a "trace zero" submodule Q C V, where V = ker Tr p. If eo is 

the identity element, then Tr p(eo)= n #  0, so 

Any v ~ V has a translate 

V = eoA ~) V. 

~'(v) = v _ 1  Tr(p(v)) eo 
n 

which lies in ~', and any other translate of this element will not  lie in ~'. Thus 
given any basis {eo, e, . . . . .  e._,} there is a unique translation T ~ ~ which maps 

each e, for i # 0 into ~'. 

DEFINmoN. Let :~°._~(V) be the set of all tensors a ~ ~ . - I ( V )  such that 

(6) Tr po I f '  = 0, 

p~ defined by the multiplicative structure determined by a. Let cg°(A) be the 

corresponding subset of c~ (A). Denote Tr p~ I ~' by Tr(a)-.  

DEFINITION. Let o_  . , . R .  - R./(Xj=o c0)i=~, and let CO. = Spec(R°). 

REMARK. In CO. the orbit of the n-fold point is a single point, and the 

dimension of every other orbit is n - 1 less than the corresponding orbit in (7.. 
Thus, for example, ~ has two components of dimension 4 and 1, intersecting in 

a single point. 
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Lr~MMA 3. 5(°.-I(M)A is a [unctorfrom ~._~ to ((sets)) and thus ~°_~(A ) is a 
[unctor [rom K-algebras to ((sets)), represented by R °. 

PROOF. As described above, any morphism ([, 0) in ,~n-~ induces a morphism 
(f, 0): Y/',-~(M)A--->~n-~(M')A'. Furthermore, this morphism factors naturally 

into a composition of (f, id), denoted by f, with (id, 0), denoted by 0. Thus it 
suffices to show that f and 0 map the trace zero structure constant tensors to 

trace zero tensors. We first consider f:  ~,_~(M)A---> ~-~(MQAA' )A , .  Since 

Tr ( f ( a ) ) -= f (Tr (a ) ) - ,  we see that T r ( a ) - = 0  implies that Tr(f(t~))-=0, so 

f(5~°._~(M)A ) C 5~r°~_~(M ~A  A ')A,. Now consider 0: ~_~(M ~)A A'),v---> 

~K.-~(M')A,. Let f~ . . . . .  [._~ be a basis for M ~A A'  as a free A'-module. A tensor 

c~ lies in ~K°.-~(M Q,~ A '),v if and only if its coordinates (a~) with respect to the 

Ei=o a~j=0 for each i = 1 , . . . , n -  1. O(a) has the basis eo, f~,...,[,-~ satisfy "-~ J 
same coordinates with respect to the image basis eo, O(f~),..., 0([~-0, and since 0 

is an isomorphism, 0(fl) , . . . ,  0(f,-1) generate M', so O(a)E~r°,_~(M')A,, as 

required. 
~o is the composition of two functors, and is thus itself a functor. The 

representability of c~o by R ° follows from the representability of qg. by R. 

proven in Theorem 1 and from the trace zero condition on the coordinates given 

in the first paragraph of this proof. 

LEMMA 4. For n > 2, a tensor a E ~g._~ is completely determined by its 
projection ~ra onto (,'* ~ (,'* ~ (,'. 

PROOF. The A-module homomorphism ~': V* ~ V* ~ V--o V* ~ V* t~ Q 
is induced by the dual i*: V*-~ ~'* of the injection i: 1~'--> V, and by the 

0 for i . j ~ O  projection ~': V--* (1. Thus it suffices to show that the elements aij 

are completely determined by the elements a'0 for i . j .  t~  0, since the coordi- 
nates of a for i =  0 or j = 0 are fixed by the identity condition (5). Since 

o (a, a)~k for a E ~/'~ (~7), it also satisfies (a, a)  = O. In order to find a,j, we look at 

any k ~ O, i. We get an equation 

t k t k 
a i j a t k - -  a i k a i r  --- O. 

,=o 

Since a~k = 1 and a~o=O by (2), we have 

a i j  - - a i j a t k -  a j k a i ,  
t=l 

- - k = - ( ira, ~ra ),ik. Q.E.D. 
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REMARK. If a E ~f,(V), then for i~  k, (~'ct, 6"a)~k and (~'a, ~'a)~,ik are inde- 
(era, ¢ra),jk = 0 for other values i,j, k, q = pendent of k and i respectively, and " " q 

1 , . . . ,n .  

We now reformulate Theorem 1 in terms which will be appropriate for 

globalization. 

DEFINITION. Let ~.  be the category of triples (A, M, a)  such that A is a 

K-algebra, M is a free A-module of rank n - 1 ,  and a E g/'°._~(M)A. A 

morphism is a triple (f, 0, (.f, 0)): (A, M, a ) ~  (A', M', a'), where 

(f, 0): (A,M)--*(A',M') is a morphism in ~,-1, and (f, 0 ) ( a ) =  or'. 

DEFINITION. 

let 

For any n-cover B of A, let E(B) be its trace zero module, and 

a ( B ) ~  ~I°._,(E(B)) 

be its structure constant tensor. Conversely, for any n-cover data triple 
(A, M, a ) E  ~n, let M be the A-algebra with underlying A-module M and 

structure constant tensor or. 

THEOREM 1'. The isomorphism classes of affine n-covers are in one-to-one 
correspondence with the isomorphism classes of data triples (A, M, a ). 

PROOF. Consider the functions 

B ---* (A, E(B), a(B)), 

M~ ,.--(A, M, a). 

The composition B---* (E(B))~tBj is a natural isomorphism obtained by sending 

the identity element of B to e0 E E(B). Now consider the composition from 

~- - -*~ , .  Since E(M~)= M, and a(/14L)= a, this composition is actually the 

identity. We conclude that we have an equivalence of categories, and thus a one- 

to-one correspondence between isomorphism classes. 

§2. Formal moduli of n-dimensional algebras 

Let ~ be the category of local Artin algebras over the algebraically closed 

field K, and let ~ be the category of K-algebras which are inverse limits of 
directed systems of elements in ~, all of which are complete local rings over K. A 

functor F on ~ is called prorepresentable, if there is an object R in .~ such that 
F is isomorphic to HomK (R, ') .  It is said to have a prorepresentable hull R if 
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there is a morphism of functors Homr (R, A)--* F(A) which is surjective for all 
A, and an isomorphism for the tangent space. 

Let Bo be a K-algebra of dimension n. 

DEFINmON. A de[ormation B of/30 over a K-algebra A is an affine n-cover 

B over A, together with a given isomorphism b ®AK-~Bo. Identify the 

underlying vector space of 13o with Vo, and let ao be the structure constant tensor 

of Bo. Define 

c~,~o(A ) = {ct E c~. (A)[ a Q,~ K = ao}. 

cg.,oo(A) is acted on by the subgroup gt, (A) of M(A) consisting of all auto- 

morphisms Q E ~ ( A )  such that O @A K = IVo. The orbits of C~.o under the 

action of this group will consist of structure constants whose corresponding 

algebras are isomorphic not only as affine n-covers but also as deformations. 

Extending the Schlessinger deformation theory to the case in which Bo and B 

are not necessarily commutative, we define the deformation function DBo(A) on 

to be the set of isomorphism classes of deformations of Bo over A. Dso(A) can 

be identified with the set of orbits of ~.,,o(A) under the action of M, (A). Let 
K[e], e 2= 0 be the two-dimensional algebra of the two-fold point. 

THEOREM 2. cg.,~ 0 on ~ is a prorepresentable functor prorepresented by the 
completion R=.o of R. at ao. Dao has a prorepresentable hull whose tangent space 
Da~(K[E ]) can be canonically identified with a quotient of c~,~o(K[e ]) by the orbit 
of ao under the action of M,(K[e]). 

PROOF. The prorepresentability of ~,~a0 on Le is a direct consequence of the 
representability of c¢. in the category of K-algebras. We have an isomorphism of 

functors taking a E ~. (A) to 0~ ~ Hom~8(R,, A ). If a ~ c¢,~.o(A) for A E ~, 

then ot ~)A K = ao implies that 0~ factors through the localization R.,.o of R. at 

ao. Furthermore, since A, being an Artin algebra, is complete, 0~ further factors 

through the completion /~..,o of this local ring. Conversely, any algebra 
homomorphism 0 in Hom(R,,~o,A) determines a =(0~(c~)). The mapping 

0 ~ ao is one-to-one, since 0 is completely determined by the images of the 
P 

generators co. 
We wish now to identify D Bo(A) with the set of orbits of Y~,~0(A) under the 

action of M,(A). We know from Theorem 1 that isomorphism classes of 

n-covers are in one-to-one correspondence with orbits of cg. (A) under the 

action of ~.  Since we have chosen a fixed identification of the underlying 

K-vector space of Vo with B0, two structure constant tensors a and a '  belonging 
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to the same orbit of M(A) will give isomorphic deformations if and only if 

a @A K = a0 = a '  @A K. However, since a '  = O o a, this is equivalent to requir- 

ing that Q @A K = Ivo. Conversely, if a ' =  O o ct for O E Mr (A), then I7'o is 

isomorphic to V~,, not only as an n-cover but also as a deformation. 

In order to show that D~o has a prorepresentable hull, we have to show that 

conditions (H1)-(H3) in Schlessinger [12] are satisfied. We write D for D~o. Let 

u': A ' - *  A be a homomorphism of Artin algebras from ~, and let u": A"---~ A 

be a surjection from the same category. We consider the map 

h: D(A' xA A")---~ D(A ') XmA J D(A"). 

(H1): We must first show that h is surjective. Let r/' E D(A'), TIE D(A) and 

71'E D(A") be isomorphism classes such that -q' and 71" reduce to 7/ after 

tensoring by A. We chose representative structure constant tensors a ' ~  
c~,~0(A' ) and a " E  c~,~0(A" ) for 77' and if'. Let /3'= a'@A,A and /3"= 
a" @a-A. By hypothesis /3' and /T' determine isomorphic deformations, and 

therefore lie in the same orbit of q~,~o(A) under the action of M~ (A). Thus there 

is an A -module automorphism Q E Mr (A) of V(A ) such that/3' = O o/3". Since 

A " - * A  is surjective, Q can be lifted to an A-module automorphism Q"E 
M~ (A"). Set y" = Q"o a". Since Q" @a" K = Q (~)A K = I, we find that 

),"t~a,, K = a0, so y" and a" lie in the same M~(A") orbit, showing that 7" is an 

alternative representation of the isomorphism class if', with the additional 

property that 7"~)A',A =/3'. We now form the fiber product 

lies in ~,~ao(A' xAA") because substitution of the coordinates of ~ into the 

defining equations of R,~o gives elements of A'  ×A A" which vanish under both 

projections and thus vanish altogether. The algebra on V(A'xAA") with 

structure constant tensor ~ is a representative of the element of D(A'xAA")  
which maps to ~ in D(A') and 7/" in D(A"). This proves (H1), that the map is 

surjective. 

(H2): Let K[e], e 2 = 0 be the algebra of the two-fold point. We need to show 

that if A = K and A " =  K[e],  then 

h: D(A' ×A A")'-> D(A') XDtA~ D(A") 

is a bijection. We will in fact show this when A = K and A"--> K is an arbitrary 

homomorphism of K-algebras, necessarily surjective. Let .A = A ' x r  A". Since 

we have already shown that h is a surjection, it remains to show that it is 

one-to-one. More specifically, if ~ E D(,,~), and ~ is a representative of the 
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corresponding orbit to ~ o ( . 4 ) ,  then we need to show that the orbit of ti is 

completely determined by the orbits of its images a ' E  qg,~oo(A') and a"E 
qg~,~o(A"). Suppose Q' ~ ,dl (A ') and Q" E Mr (A"). Since both Q' and Q" reduce 

to I in Mr(K), we can form the fiber product 0 = Q' xzQ" which will carry ti to 

Ooff, a structure constant tensor which reduces to Q'o a' in ~,~o(A') and to 

Q"o a" in ~ o ( A " ) .  

(H3): dimrD~(K[e]) < dim ~ o ( K [ e ] )  

_<- dim V(KIe])* ® V(K[e])* ® V(K[e]) 

< 8 n  3. 

Thus the tangent space is finite dimensional. 
It remains to demonstrate that there is a natural projection of %~o(K[e ]) onto 

Ds(K[e]). Let m be the maximal ideal in a prorepresenting hull R of DB, 

constructed as in Schlessinger's theorem, and let rh be the maximal ideal o f / ~ o ,  

the prorepresenting ring for ~,~o. In the Schlessinger construction, the Zariski 
tangent space (re~m2) * of R is canonically identified with D(K[e ]) and similarly 

(th/tfi2) * is canonically identified with ~,,~0(K[e]). D(K[e]) has a prorepres- 

enting object 

R(xo,. . . ,  x.-l) xixj - ~ c,jxp 

which is the image of the identity under the surjection HomK (R,.)---~ D. Any 
element s E (re~m2) * extends naturally to a functional s on m with kernel m 2, 

p 
and determines a ring homomorphism R ~ K[e] by sending each c0E m to 
es (c~). This homomorphism then induces an element of D(K [e ]). Similarly, an 

element s of (rh/rh2) * induces a homomorphism/~,.o---~ K[e],  which takes the 
p p 

eb,j) E qg,~,o(K[e]), where (a,j) is representing structure constant tensor to (a,j+ P 

the structure constant tensor ao of Bo. ~,~,o(K[e ]) has a vector space structure 
induced from that of (rh/rh2) *, and D(K[e])  has a vector space structure 
induced from (re~m2) *. The elements of c~,~.o(K[e]) are all those tensors such 

that 

P P P P i _ J 
b i o  - -  (a~j+eb~i,a~i+ebo)=O and boj=0. 

The elements of D (K [e ]) consist of the isomorphism classes of the correspond- 

ing algebras 

4 



82 M. SCHAPS Isr. J. Math. 

The kernel of the corresponding homomorphism of vector spaces 

~,~o(K[e])---~D(K[e]) is precisely the set of all a ' E  c~.,,0(K[e]) such that the 

corresponding algebra is isomorphic to B0, i.e., is the orbit of or0 under the action 

of 

§3. Construction of the versal deformation space 

Having proven the existence of the versal deformation space in §2, we now 

proceed to the more practical problem of constructing it. The method we give for 

constructing the tangent space has been implemented on a microcomputer, 

which is sufficiently powerful to handle algebras of low dimension (n =< 10) with 

sparse multiplication tables. For larger n the program would have to be 

transferred to a larger computer. 

For those who skipped §2, we will give a brief description of the object we 

wis3a to construct. Let a be a structure constant tensor lying in the variety of 

structure constants. We wish to find all deformations of the corresponding 

algebra B,, i.e., all algebras B~, whose structure constant tensors lie "close" to a. 

We want, in fact, to find a certain number of parameters T1,.. . ,  TN such that the 

coordinates of a '  will be polynomial functions of the coordinates of tz and 

formal power series in the variables Tt . . . . .  TN. If they are also polynomial 
functions in the T,, then we say that the space is algebraicizable. We further 

require that all the B~, be non-isomorphic to B,, a condition which insures that 

our parameter space has been chosen as small as possible. 

Except in exceptional cases (like algebra (24) in Mazzola [7]) the parameter 

space is a completion of a section of Cn transversal to the orbit of t~ under the 

group action on Cn. However, since Cn is defined by a large number of quadratic 

equations, its structure is difficult to compute. Thus instead of starting at Cn and 

cutting down, we start at a and build up. We first construct a minimal family of 

first order deformations; this is the object we call the tangent space. We then try 

to extend these first order deformations to higher orders. 

Construction of the Tangent Space 

We take the simplest possible Artin algebra with non-zero radical, 

K[e ]--~ K[t]/(t2). A deformation of Ba over K[e ] is an associative algebra with 

identity, Ba,, such that Ba, QKHK = B,. This corresponds to a structure 

constant tensor a ' =  a + e[3 ~ qg. (K[e]). 

LEMMA 6. For each ct ~ ~ (K), the tensors [3 E V* ~ V* (~ V for which 
a + e~ lies in c~. (K[e]) form a linear subspace W defined by the conditions 
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(43 

(5') 

PROOF. 

and cg. (K[e]) respectively are 

(4) (a, a)  = 0; 

and 

(5) 

Using the fact that e 2= 0, we get 

e((a, /3) + (/3, a )) = O 

and 

(a,/3) +(/3, a)  = O, 

/ 3 ( eo®V)=/3 (v®eo)=O f o r v ~  V. 

From the definition of cg., the conditions for a, a +/3 to be in cg. (K) 

(a + ~/3, a + e / 3 ) = 0 ,  

a ( e o ® v )  = (a  + e / 3 ) ( e o ® V ) =  v and a(v ® e o ) =  (a + e / 3 ) ( v ® e o )  = v. 

E/3(v ® e0) = ~/3(e0® v) = 0. 

Multiplication by e does not annihilate any elements of K, so we get (4') and 

(5') as desired. O.E.D. 

As a second stage we want to eliminate the trivial deformations determined by 

infinitesimal automorphisms. 

DEFImTION. Two tensors /3 and/3' are equivalent if B~+~ is obtained from 

B~+,a, by an automorphism Q = I + eM which is the identity when e = 0. 

REMARK. It will frequently be the case that/3 and/3' are not equivalent in 

this sense, yet B~+~ and B~+~z, will be isomorphic via some automorphism O 
which is not in the form I + eM. A fuller discussion of this phenomenon is given 

before the example after Lemma 8. 

LEMMA 7. /3 and/3' are equivalent if and only if they lie in the same coset of 

the vector space Ua C W~ consisting of all tensors 6(M)a,  where g,(M) is the 

operator defined on V* ® V* ® V by the formula 

~b(M) = I ® I Q M  - I ® T M ® I  - T M ® I ® I .  

M ranges over all n × n matrices with first column zero. 

PROOF. By the definition of equivalence given above, and by our discussion 

in §1 of the effect of an automorphism of Ba on a, we see that /3 and/3'  are 

equivalent if and only if there is a matrix O = I + eM E AffAut V(K[e]) such 
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that 

+ = (Q* ® Q* ® Q)(a  + e/3). 

Substituting for Q, and using the fact that e 2= O, we have 

Q* x Q* x Q = r ( I +  eM)-~®r(i+ eM)-~®(i+ eM) 

= (I - e rM) ® (I - e rM) ® (I + eM) 

= I ® I ® I + e ( I ® I ® M - I ® T M Q I - r M ® I @ I )  

= l ® I ® l + ~ ( M ) .  

Again applying e 2= 0, we get 

( Q* ® Q* ® Q )(a + e/3 ) = (I ® I ® I)(cl + e/3 ) + ~b(M)(a + e/3 ) 

= (a + e/3)+ e~(M)a. 

thus a + e/3 is equivalent to a + e/3' if and only if/3'  =/3 + ~(M)a. 
I + eM E Aff Aut(V(K[e ])) if it is invertible and its first column is identical to 

the first column of I. I + eM is always invertible with inverse I - eM. Thus the 

only condition on M is that its first column must be zero. The set of all such M 

form a. subvector space of the set of n x n matrices, which we will denote by 

affaut(V(K)). (The notation is intended to reflect the fact that it is the Lie 

algebra of the algebraic group Aft Aut(V(-)), though we make no explicit use of 

this fact.) Since ¢J is a linear operator on the n × n  matrices, Ue = 

{~(M)a I M aft aut(V(K))} is a vector space. Thus/3 and/3' are equivalent if 

and only if /3' E/3 + U~. 
We wish to pick one element out of each coset. For our purposes the simplest 

way to do so is to choose a non-degenerate bilinear form ( , ) and consider the 

orthogonal complement U~ to Ue in We. 

[.EMMA 8. Let U~ C V* ® V* ® V be the linear subspace consisting of all 
tensors /3 E V* @ V* ® V satisfying the following linear equations: 

(i) = 0, 
(ii) /3(v®eo)= /3(eo®v)= v for all v E V, 
(iii) (/3, ~ ( M ) a )  = 0 for all n × n matrices M with zero first columns. 

Then U~ contains exactly one/3 from each equivalence class of tensor/3 such that 
Be+e~ is a deformation of B~ over K[e]. 

PROOV. Since We = U, ~) U~, each /3 'E  W~ has a unique projection to an 

element/3 E U~. This/3 is, by Lemma 7, the unique element of the equivalence 
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class of /3' lying in W~. By Lemma 6, the elements of W~ give all first order 

deformations. 

REMARK. This U~ is isomorphic to the tangent space of the deformation 

functor, which consists of all first order deformations modulo infinitesimal 

isomorphism. 

Implementation 

Lemma 8 gives a large system of linear equations for the coordinates of/3, with 

coefficients determined by the coordinates of a. The author has written a 

computer program which takes as input the non-zero entries in a, generates this 

system of equations, and solves it. In order for the program in its current forms 

to work effectively, a must be sparse in the sense that most of its coordinates are 

zero, but most algebras are given in a normal form for which this is true. Group 

algebras are a notable exception to this rule, but group algebras are semisimple 

and thus have no non-trivial deformations. 

DEFINrnoN. An algebra is rigid if its orbit is dense in some component of Cn. 

A family is semirigid if the unions of the orbits of the algebras in an open subset 

of the family gives a dense subset of a component of C,. The general algebra in 

the family will also be called semirigid. 

Every component of Cn is the closure of the orbit of either a rigid algebra or a 

semirigid family. In dimension 4 there are four rigid algebras and one semirigid 

family, while in dimension 5 there are nine rigid algebras and one semirigid 
family. In dimensions n _-__ 6, the rigid algebras are semisimple or radical-square 
zero, except for the rigid algebra of upper triangular 3 x 3 matrices. The 

parameters of the semirigid families enter at the level of the radical-square. 
If we can find a way to generate all candidates for rigid algebras and semirigid 

families, then they can be distinguished from non-rigid algebras by the tangent 
space of the deformation space, the object described in Lemma 8 and computed 

by the computer program. An ordinary algebra has first order deformations 

which are not equivalent but which are isomorphic. That is to say, given a 

structure constant tensor a, one can usually find deformations a + e/3 and 

a +e/3' such that B~+~ is isomorphic to B~+~, via some automorphism 

QEAffAut(V(K[e])) ,  but Q is not of the form I+eM. This happens 

whenever the orbit of a is contained in the closure of an orbit O(a') of larger 

dimension, for in that case the stabilizer of a is larger than the stabilizer of a ' .  

Suppose we could find a rational curve of structure constant tensors a ( t ) =  
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a + t/3 + t ~ . "  whose generic element was in the orbit of a '  but which equalled ot 

for t = 0. Take O to be an element of Aft Aut (V(K))  which lies in the stabilizer 

of a but not in the stabilizer of 6 ( t )  for general t. O operating on 6( t )  will give a 

new curve a + t/3'+ t~ . . . .  . If we consider ~( t )  as a formal power series and rood 

out by t z, we conclude that O o (a + e/3) = a + e/3'. Thus we get isomorphic but 

non-equivalent first order deformations. 

The only cases where this does not occur are cases where a is not contained in 

the closure of any other orbit. These are usually the cases of interest to us: the 

rigid and semirigid algebras. 
The author has a student, Thierry Dana-Picard, working on the problem of 

generating and checking candidates for-rigid algebras, using the program 

described above. The problem of locating semirigid algebras is somewhat more 

difficult. 

Trace Zero Case 

As was shown in §1, every algebra is isomorphic to a trace zero algebra. 

However,  for calculating the tangent space it is important that the multiplication 

table be as sparse as possible, and thus it is not generally wise to translate the 

algebra to the trace zero form. 

For local algebras the simplest form of the multiplication table often is in trace 

zero form, and if so we can take advantage of this fact. In place of all the 
equations (/3, ~b(M)a ) given in Theorem 2, we use only the equations for which 

the first row of M, as well as the first column, is zero. This makes I + e M  an 

element of G(V(K[e ] ) ,  and gives us the general infinitesimal automorphism 

leaving the image of a trace zero. In place of the m equations we have removed, 

we add n equations requiring/3 to be trace zero: 

ra _ _  /31,+... +/3,.-0 

for i = 1 . . . . .  m. Thus both a and a + e B  lie in rg°(K), ~ (K[e ] ) r e spec t ive ly .  

EXAMPLE 1. Every finite dimensional algebra with structure constant tensor 

has a linear deformation to the n-fold point given by 

- P  2 _ 0  
xj • xj = ta ~jxp + t a ~jXo for i, ] > 0. 

When t goes to zero, we get the trivial multiplication x~ • x~ = 0 for all i, j > 0. 
P If all the a~j= 0 for i , j  > 0, then the equations (a,/3) +(/3, a ) =  0 used in 

defining the tangent space are all trivial. Furthermore, all of the tensors ~b(M)a 

are equal to zero, for M mapping Q = (xl . . . .  , xm) into itself. Thus the only 
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non-trivial infinitesimal isomorphisms are the translations. Since X a'~s=O for 

each i > O, we are in the trace zero case. Therefore  we can assume that we use 

the equations appropriate to the trace zero case. Since these are the defining 

equations of the variety C°, of trace zero structure constants, we see that the 

versal deformation space of the n-fold point is algebraicizable. The formal 

parameter  space is the vertex of C°, when regarded as a cone with respect to the 

action 

- P  - P  a ~j---> ta ~j for i, j > O, 

0 2 - 0  a ~j---~ t a lj. 

A Versal Deformation Space Which is Not Irreducible 

EXAMPLE 2. Find the versal deformation space of B - ~  K[x, y]/(x 2, y2) for 

K = C. As a K-vector  space, B has dimension 4, with basis Xo = 1, xl = x, x2 = y, 

x3 = xy = yx. Thus B = B~, where a is the tensor with a31 = a 312 = 1 and a~'j= 0 

for all other i • j # 0. Since the calculation is somewhat complicated, and will in 

fact fill up most of the remainder of this section, we will divide it into 

subcategories. 

EXAMPLE 2 (contd.). Calculation of first order orbit of a 
Let us determine what are the various O(M)a for this a. We first note the 

general fact that if v is the tensor of the n-fold point, then $(M)v  = 0 for all 

M = "~(V(k)), since the n-fold point has a presentation which is stable under the 

action of the automorphism group of 17'. We see that we need only consider 

O(M)&, where & is obtained from a by replacing all entries with i • j = 0 by 0. 

Letting E,i-' - e ' ~ Q e *  Q e , ,  we have d = E32+E3~. Let EE, = e * Q e ~  

We need to describe the action of $ ( M )  on a basis element Eli of 

V* Q V* @ V. Letting M = [mkt] we have M = X m~sEu, 

M .  e, = ~, m.e, 
q=l 

and 

e*~ • rM = ~ m~e* q .  
q = l  

The summations begin with q = 1 because ink1 = 0  for all k .  

~ ( M ) =  I @ I @ M - I @ r M @ I - r M @ I @ I ,  we get 

tp(M)EI~ = ~ mq,E~- m~E'~q- m~E'os. 
q=l 

= O. Since 
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Thus in our case 

(7) ~b(M)(E~2 + E321) = ~ mq3(E'12 + E'~O- m2q (E~q + E~,)- mlq (E3q + E~2). 
q=, 

We first wish to calculate the dimension of the stabilizer of t~. We note that ms~ 

and m32 do not appear in (7), so Est and Es2Estab(a) .  We also have 

2 E 3 3 - E E 2 - E , ,  and E 2 2 - E n .  These generate the entire stabilizer since 

dim ~ ( V ( k ) ) =  9, and we have five linearly independent tensors, 

~b(E,3)a = E'12 + E~I - E~3- E32, ~b(E2,)a = 2E31, ~(Es3)a = E32 + E,3,, 

~b(E23)a = E~2 + E~, - E~3 - E331, ~b(E,2)a = 2E32. 

EXAMPLE 2 (contd.). Equations for the orthogonal subspace 
We wish to construct R~. Letting 3' = (c'ii) with c' o = 0 for i • j = 0, and letting 

the inner product be the usual inner product ( , ) for a vector space over K 

with basis E,'j, we find that condition (iii) of Lemma 8 gives us five equations: 

- c~  -3c~2+ c 112= - c',2, c~  = 0 ,  c h = - c  ~, 
3 

- c , ~ -  c~, + c h  - c~,, c ~  = 0. 

EXAMPLE 2 (contd.). Associativity equations 
We now apply condition (i), (a, y) + (% a)  = 0, 

I q t q I q t q aiictk-- aikCu + ciiatk-- clkait = O. 
t = 0  

We recall that a~i=0 except for a~z, a31, a~k, ' ' a ~o, which equal 1. We have two 

symmetry transformations: interchanging 1 and 2, and switching the bottom two 

indices, while simultaneously interchanging i and k. We consider all possible 

equations according to different values of i, j, k and q. 

Dividing into 15 cases according to the values of i, j and k, we get information 

from the following cases, after applying all symmetry transformations. 

j = k = 3, i = 2: c13° _- c3,° = c33,2 cos = c °32 = c~3, c33° _- 0. 

/=3, i=k=2, q=3: c~,3=c~2, 
c~,~ = c~,. 

j = 3, k = 2, i = 1, q = 3:c1,3 = c~2; c2,3 = c~,. 

= C 2 - -  C 2 i = j = 2 ,  k = 3 ,  q = 3 : c ° 2 = c ~ 3  C3~z;C°~= 13- 3~. 

j = 2, i = 1, k = 3, q = 3:c°2 = - c33 + c 223," C201 = __ C33.J1_ C 1 3 . 3  I 
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j = 2 ,  i = l ,  k = 2 ,  q = O :  

j = 2 ,  k = 2 ,  i = l , q = 3 :  

j = 2 ,  k = 2 ,  i = l , q = 2 :  

j = 2 ,  k = l , i = l , q = 3 :  

j = 2 ,  k = l ,  i = l , q = l :  

C o - C o = O; o o 23-- 32 Cl3=C31=0. 

C 3 - -  C31 = C33 C 3 - -  32 - -  = 23 - -  0 .  

C~2 + C ° 0 12 = 0; c~3 + c21 = 0. 

c~i c~ 2 2 - -  "-'~ C 1 2 - -  C21 = O,  

c~2 - c ~  + c~'1 - c 112 = 0 .  

C~I C]3 O C O - -  d l -Cl  2 - -  2 1 = 0 ,  

C 2 - -  C 2 + cOl - -  C°2 = 0 32 23 

EXAMPLE 2 (contd.). Solving the system 
+ c 12 + c 13 = 0. Since ,3 = 0 we get Adding on the trace criterion, we have c ' .  2 3 c 3 

c~2 = -c1,1. Similarly c 121 = - c22.2 c311 + c322 + c 333 -2c333 = 0 -  so c333 = c~1 + c322 =0 .  

Finally, we add the equations obtained from $ ( M ) a ,  now simplified by the 

substitution 

c~3 = c32 = c~3 = c]l = 0 above. 

The end result of combining all the linear conditions is the following tensor: 

t = O  t = l  t = 2  t = 3  

[i ° °  ] oo a o [i oo ] ea0a r o ° i  ' ] o [i 'oO i] 
d ~ c l  I 0 23 ~ C32 ~ C22~ 

a p  2 2 
~- C13 ~-- C31 ~ C ° l ;  

e = c~2 ,  

e' = c ~ ,  

f = c L  = - c~2. 

The tangent space of Spec R ~ has dimension 5. 

EXAMPLE 2 (contd.). Second order de[ormations 
Applying a computer  implementation of the method in Appendix 1 to 

calculating the second order  deformation produces equations 

a . f  = a ' . / : = e . [ = e ' . [ = O  

for the parameters. Thus the parameter  space is reducible, consisting of one 
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component satisfying a = a ' =  e = e ' =  0 and one component satisfying f = O. 

As explained in Appendix 1, there are many possible deformation spaces for this 

parameter space. It suffices to give one example: 

x~ = a'  + ex2, 

X22 = a + ex1 ,  

X,X2 = (1  + f)x3, 

x2x, = (1 - f)x3, 

x~x3 = a 'x2+ ae' + ee 'xl ,  

x3x~ = a'x2 + ae '  + ee'xl ,  

x2x3 = axl + a'  e + ee'x2, 

x3xz = ax~ + a ' e  + ee'xe. 

EXAMPLE 2 (contd.). Interpretation and summary  

Finally, we consider the completion of the process from second order to power 

series. We calculate the two components separately: 

( A )  The non-commuta t ive  component: The given deformation is non- 

commutative only when f ¢  0, in which case 

a = a ' = e = e ' = O .  

Thus we have a single parameter and every product is zero except for 

x,x  = (1  + f)x3, 

x2x, = (1  - f)x . 

Every product (x,xj)xk and xi(xjxk) for i,j, k >= 1 is zero, so all associativity 

conditions are fulfilled. Thus the deformation extends to all orders, and we get a 

linear, one-dimensional parameter space with parameter f. This is a semirigid 

deformation since two such algebras for f and f '  are isomorphic if and only if 

f'= - f  or f'=f. 

( B )  The commutat ive  component.  In the second component,  f = O. We then 

have x~xz = x3 = x2x3 and the deformation is commutative, since we also have 

x~x3 = x3xl and x2x3 = x3xt. Let x~ = x, x2 = y, and x3 = xy. The general deforma- 

tion given above is then entirely determined by the commutativity relations, the 

associativity relations, and the two equations 
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For example, 

x 2 = a ' +  e'y, 

y 2 = a + e x .  

xlx3 = xl(xlx2) 

= (x~,)x~ 

= ( a ' +  e'x2)x2 

= a t x2 .4  - e~x~ 

= a ' x z +  e '(a + ex~) 

= a'x2 + e 'a  + e'exl.  

The algebra we are deforming is a complete intersection and thus its first order 

deformation can be lifted to all orders, giving a smooth parameter space of the 

same dimension. In this case the dimension is four and the parameters are a, a ' ,  

e, e'. Furthermore, since we do not need power series to describe the 

deformation, the parameter space can be algebraicized. 

In summary, the general versal deformation space of the algebra 

K[x,x2x3I/(x~, x~, x,x2 - x3, XlX3, X2X3, X 2) 

consists of a one-dimensional semirigid non-commutative component and a 

four-dimensional component which is the commutative versal deformation space 

of the codimension 2 algebra 

K[x, yl/(x 2, y2). 

Completion and Algebraicization 

We now take up the second stage of the construction - -  passing from the 

tangent space to a complete local ring, and if possible, to an algebraic ring. We 

fix the dimension n, and denote the representing ring of Theorem 1 by R, so that 

the notation Rp can be used as in Schlessinger's paper. We take a basis 

/3 ' , . . . , / 3 '  to the tangent space constructed above, and choose r indeterminants 

T , , . . . ,  7",. We let 

a2 = a + T,/3' + . . .  + T,/3' 

regarded as a structure constant tensor over R z = K [ T ~ , . . . , T , ] / ( T )  2, i.e. 

a2 E C, (R2). For each l = 3,4 . . . .  let St = K [ [ T ~ , . . . ,  T,]]/(T) t, the truncated 
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power series ring. The esgential content of Theorem 1 in §2 is that we can 

construct an inverse sequence Ri+t--, R, of rings, each R, a quotient of &, and a 

sequence of elements a, E C. (R,) with the following properties: 

(1) a,+, ®R,+, R, = a,. 

(2) If Ai is any quotient of &, and ~/i is any structure constant tensor in ca, (A,) 

for which yt @a, K = a, then there is a homomorphism 8: R, --+ A~ such that 

~,; = at @~, At lies in the same orbit as 3,,. (The theorem itself would only give 

the algebras B.,. We apply Theorem 1 of §1 to get the structure constant tensor 

Oft .) 

DEFINrnoN. Letting R® be the inverse limit of this sequence of rings and a® 

the inverse limit of the sequence of structure constants, we call Spec(R®) the 

parameter space and B~. the deformation algebra of B~. 

We may write a® = a + X~.~ Td3 ~ + Xb,-~ T~Tv/3 ~v+'" ". If we want to attempt 

a construction of R~ and or=, we do so by successively constructing Rp+~ = 

Siv+t/Jiv+t and ctiv+~. Given Riv and ap, we set 

aiv+~ = aiv + I,,~iv T~'B"' 

for the set of multi-indices/~ = (p,t . . . . .  /~,), T ~ = T~' . . . .  TT'. Substituting in the 

formula from Theorem 1, 

we have 

(C[IV+I , C[IV+,) =" 0 m o d  T iv+t, 

0 = {aiv+,, ap+,) - (aiv, aiv) + ,~,~iv ({a, ~" )  + {~' ,  a))TL 

Since { , ) has n '  components,  this is a large system of equations. 

From Schlessinger's theorem on functors of Artin rings it is known that there 

is a minimal ideal I iv+l for which this system is solvable. 

In Appendix 1 we give the construction of this ideal in the particular situation 

of deformations of Artin algebras. This too has been partially implemented for a 

microcomputer. Modulo this ideal we may choose a set M of ~ such that 

{T~. ]/x E M} forms a basis for the vector space of monomials of degree p 

modulo Jiv+', and we may assume that/3 ~ = 0 except for tz E M. For each p. ~ M 

we get a system of equations for /3 ~. Solving these equations for the various 

components (/3~)" of /3 ~, we then have 

aiv+l = O/Iv OF X / 3~T'- 
pLUM 



Vol. 58, 1987 MODULI OF FINITE COVERS 93 

Continuing in this way, we construct R~ and a~. 

§4. Giueing 

We now globalize the results in §1, producing data triples which determine the 

global n-covers of a (commutative) integral scheme of finite type Y over K. By 
discussing the cases of double, triple, and quadruple covers, we then show how 

the information about deformations of algebras determined through the tech- 

niques of §2 and §3 can be used to make this classification concrete. 
Recall that our ground field K is algebraically closed, of characteristic zero or 

prime to n. By definition of an integral scheme ([5], p. 82), Y has a covering by 

atiine open sets Y = Spec(Ai), with Ai a finitely-generated K-algebra which is 

an integral domain. Let ~Tv be the structure sheaf of Y, with ~?v (Y~) = A~. In this 

very classical situation, the closed points of Y, can be identified with a subset of 
an affine K-space which is closed and irreducible in the Zariski topology, and A~ 

can be identified with the regular functions on this algebraic set. 

DE,NInON. A (global) n-cover of/%. is a sheaf ~ of ~Ty-algebras which is a 
locally free ~Ty-module of rank n. 

We will follow the notational conventions in Hartshorne [5]. Elements of the 

~Ty (U)-algebras ~:(U) will be called sections of ~: over U. If V C U are open 

sets, the restriction homomorphism from ~;(U) to ~ (V)  will be denoted by pvv, 

and if s E ~:(U) we will sometimes denote Our (s) by s Iv- An element s of ~ ( Y )  
will be called a global section. Suppose { Uj}~ is an open cover of Y, and ~ is a 
sheaf on U, for each i ~ I such that for each i, j there is an isomorphism of 

sheaves ~,,: ~, Iv, nu,--~ ~. Io, nu, such that: 
(1) For each i, ~i~ = id. 
(2) For each i, j, k, q~k = q~jk ° q~i on U~ N ~ fh Uk. 

Then there exists a unique sheaf ~ on Y, together with isomorphisms 

$~ : ~(v, -~ ~ ,  such that for each i, j, Sj = q~i~ o $~. We will say that ~ is obtained 

by glueing the sheaves ~ ([5], p. 69). Although this result is given in Hartshorne 

[5] for sheaves of abelian groups, it is true as well for sheaves of sets. 

We wish now to establish the global analogues of the two functors given in 

Theorem 1'. We start first with a global n-cover ~ of ~Ty, and construct a data 

triple. Let {U~} be an open covering of Y such that each ~(U,)  is a free 
~y(U~)-module. Let ~ ( U ) =  E(~;(U)) for UC U~ be the sheaf of trace zero 

modules of the ~Ty(U)-algebras ~*(U). Since ~T is a sheaf of fTy-algebras 

we have ~%. (U, CI U i)-algebra isomorphisms 
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,p,j: p p 

and these @~j satisfy conditions (1) and (2). Since, by Lemma 3 of §1, the trace 
zero module is preserved by algebra isomorphism, the system of functions {@~j} is 

just what is needed to glue the sheaves ~ together into a sheaf of (~v-modules 

which is locally free of rank n - 1 .  

Suppose now that ~ is any locally free sheaf of ~,-modules of rank n - 1, and 

that ~* is its dual. ~* @ ~* @ ~ is also a sheaf of (~,-modules, with restriction 

functions puv and transition functions q~j induced from those of ~. For any 

U C U, define 

( ~ _ , o  ~), (U) = ~ _ , ( ~ ,  (U)) C ( ~  ® ~* ® ~,) (U). 

The restriction functions @uv make this a sheaf of (afline algebraic) sets, and the 

transition functions ~P0 permit them to be glued into a sheaf 2{°._1 o ~ on Y. 
Let us return to the case where ~ was obtained as the trace zero module of a 

sheaf ~ of ~?y-algebras. For any i, and any U C U~, define 

-- ( u ) ) .  

If j is another index such that U C Ui, then clearly 

(U) )  = a,.,  (U) .  

Thus the collection a~., (U~) of local sections of ~fo_~ o ~ determines a global 

section a~ (Y) of X°~_~ o ~ .  

DEFINITION. A global n-cover data triple (~Ty,~,a) consists of (i) the 
structure of sheaf ~ ,  of a commutative integral scheme Y of finite type, (ii) a 
locally free ~Tv-module, and (iii) a global section a of X°~_~ o ~g. They form a 

category ~ in which the morphisms are given by triples (f, 0, (f, 0)) as in the 

category ~ of affine data triples. 

THEOREM 3. The isomorphism classes of global n-covers is in one-to-one 
correspondence with the isomorphism classes of data triples ( ¢7y, ~g, or). 

PROOf. We construct an equivalence of categories. We have already defined 

the functor 

and now we reverse the process. Given a data triple (f~,, ~, a), we let ~ be the 
locally free sheaf ~Tr ~ ~. Let {U~} be an open cover of Y such that ~(U~) is a 

free tT~. (U~)-module. Let ~ be the sheaf of ¢~t,, algebras on U~ determined by 



Vol. 58, 1987 MODULI OF FINITE COVERS 95 

a (U~). The transition functions 

induce corresponding transition functions id~¢p~j on the collection {~} of 

sheaves of modules, which satisfy conditions (I) and (2) for glueing of sheaves. 

Furthermore, since the corresponding induced isomorphisms 

~,,j : ~ - , ( p  ~,(u, ~ u,,(~' (u , ) ) )  ---, ~ _ , ( p  ~,,(u,~ v,~(~'(uj))) 

carry the local section (a lu,)]u, nu, t o ( a  lu,)lujnu,, we conclude that each id O tp,, 
is actually an isomorphism of algebras. Thus there is a unique locally free sheaf 

of ~v-algebras of rank n obtained by glueing together the ~ .  We will denote 

it by ~ .  From the local isomorphisms cited in Theorem 1', we see that the 

functor ~:--->(~) is a natural isomorphism, as is the fuunctor 

(~v,  ~, a)--->(~gv, g~, a~), where ~ = ~ .  Q.E.D. 

The interest in the global version of this theorem lies in the possibility of 

constructing ~ _ ~ ( ~ )  as a functor of ~. ~¢~_~(~) can actually be endowed with 

the structure of a (commutative) scheme over Y, but the structure of this scheme 

varies as ~ varies. To make this clear, we will first review the classical case n = 2 

and then the case n = 3 from Miranda [8] and Miranda and Teicher [9]. 

n = 2: These are the classical double covers of algebraic geometry. ~ is a line 

bundle over Y. Let U be an open set on which ~ (U)  is free, and let e~ be a basis 

of the one-dimensional t~v(U)-module ~ ( U ) .  e~. e~ a°~eo+ ' = a . e~ ,  giving a 

minimal polynomial for e~. Since e, must have trace zero and e~.eo = 

0. e0+ 1.e~, we must have a~, = 0. Thus, a ( U )  is completely determined by a 
morphism ~ (U) (~ ~ ( U)--> ~v (U). We can thus identify a (U) with an element 

of ~ ( U ) * ~  ~(U)*, which we write classically as ~-2(U). This construction 

sheafifies, so we have the classical result that a double cover of Y is equivalent to 

a line bundle ~ on Y and a global section of ~-2. 

n = 3: We have taken all our covers over integral schemes, so each cover lies 

generically in a fixed irreducible component of C~. For n = 3, there are two such 

components, one corresponding to commutative algebras, and one generically 

isomorphic to the algebra of upper triangular matrices. 

In Miranda [8], he identifies global sections of ~'~(g) lying in the commutative 

component with global sections of the sheaf S~(~), the symmetric algebra on 

generated by ~ ~ ) ~  ~ ~ modulo all commutativity relations on the tensor 

product, a space of dimension four. In Miranda and Teicher [9] they identify the 

global sections of the non-commutative algebras with global sections of ~*. 
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n = 4: The semirigid family. One of the five components of C o is that 

containing the semirigid family of algebras, which appeared in the example of §3 

as the non-commutative component of the deformation space of K[x, y]/(x 2, y2). 

We will construct a parametrization of this component W, that is to say, we will 

find a birationally equivalent scheme N whose structure is easily described. C ° 

can be regarded as a subscheme of V~ Q V~ @ V0. Furthermore, as we showed 

in Lemma 4, each trace zero structure constant tensor a is completely 

determined by its projection & onto V* @ "v'g @ (z0. To simplify notation we 

will denote ("o by E. Let So be the unique point of W corresponding to & = 0. Let 

Gra (E) denote the Grossmanian variety of d-dimensional subspaces of E. An 
examination of the deformation chart in Gabriel [2] shows that at every other 

point of W, we have a morphism L: W--*Gr~(E), such that L(a) is the 

one-dimensional subspace of E corresponding to the radical squared, j2, in the 
multiplication determined by a. L (a)  is also in the kernel of multiplication from 

left and right, so that 

6 E (ElL(a))* (~ (ElL(a))* (~ L(a). 

Conversely, for any L E Grl(E), every tensor in (ELL)* ~ (ELL)* @ L deter- 
mines an associative multiplication structure, since j3 = 0 and thus the associativ- 

ity relations are void. Let N be the fiber bundle over GrI(E)--~P 2 with affine 

fiber 

F(L ) = (ELL)* @(EIL )* (~ L 

and let No be the zero section. Then W -  {Wo}--7-~ N -  No. Furthermore, the 

embedding of N ~ E* ~) E* @ E induced by the embedding (E/L)* ---* E* 
carries No to Wo. Thus the birational correspondence N---~ W is in fact a 
morphism, blowing up the point W to p2. The dimension of N, and thus of W, is 
dimP2+(dim(E/L))2dimL = 6. Since W contains a one-parameter family of 

orbits, each orbit has dimension 5. The automorphism group qd(K) has dimen- 

sion 9, so that the stabilizer has dimension 4, as calculated in the literature. For a 

fixed element L of Gr~(E), the afiine space (E /L )*~(E /L )* (~L  can be 

identified with 2 × 2 quadratic forms M, with automorphisms O acting by 
T Q M A .  If  

then the orbits can be parameterized by the invariant (B - C)~IAD - BC for 

AD - BC# O. 
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In order to sheafify this construction, we define a fiber bundle X ( * )  whose 

fiber at a closed point of Y is isomorphic to N. For U C U,, a section/3 (U)  of 

N ( ~ ( U ) )  is an element (L(/3) , /3)(U) with L(13)(U)E Gr,(~g(U)) and 

~ ( U )  E (~(U)/L( /3) (U))*  ~ (~(U)/L( /3)(U))*  (~ L( f l ) (U) .  

The canonical mapping f l (U)---~&(U)E ~ ( U ) * Q ~ g ( U ) * Q ~ ( U )  induces a 

birational morphism from N ( ~ )  onto "/¢'(~), the component  of 5~r°~_1(~) 

containing the semirigid family. 

n >_-4: The Kronecker component. This is a direct generalization of the 

non-commutative component  in the n = 3 case given in Miranda and Teicher [9]. 

For any n, the Kronecker algebra of dimension n is the algebra with two 

idempotents el and e2, and a square zero radical J such that J = eJe2. In the 

language of quivers this would be represented by two vertices and n - 2  arrows 

from one to the other. With respect to multiplication from the left, we have 

Tr(p(e~)) = n -  1, Tr(p(e2))= 1 and T r (p (v ) )=  0 for all v E J. Thus the trace 

zero module E is generated by J and by wl = e l - ( n -  1)e2. The kernel of 

multiplication of J by E from the left is J, and for any element w of E, we have 

w =- tw~ (mod J)  if and only if w .  v = tv for any v E J. Conversely, if E = 1~'o, 

then any non-zero element s of E* determines a multiplication structure on 

£ = Vo by setting J = ker(s), and defining 

v . v' = O for v, v' E J, 

w . v = s ( w ) v  for v E J, w E E ,  

v . w = - s ( w ) ( n - 1 ) v  f o r v E J ,  w E E ,  

w . w =  - s ( w ) ( n - 2 ) w + s ( w ) 2 ( n - 1 ) e o ,  for w E J .  

The formula for w 2 is a direct result of the orthogonality of the two semi- 

idempotents 

s(w)nel  = w + s (w) (n  - 1)eo, 

- s(w)ne2 = w - s(w)eo. 

When s = 0, then the multiplication reduces to that of the n-fold point. The 

Kronecker algebra has no deformations and no specializations except the n-fold 

point, so the Kronecker component  of C°~ is isomorphic to E*.  If we sheafify we 

find that the Kronecker component  of ~ro_~(~) is just ~*, as in the n = 3 case. 

In general, in all the orbits of C°~ which we have calculated so far, we find (1) 

that resolving the singularities of the closure of the orbit produces a fiber bundle 
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over the flag variety for the flag ~ C J C j 2 . . . ,  (2) that the structure of the 

general fiber in this bundle is a reflection of the structure of the general algebra 

in the orbit, and (3) that this bundle can be sheafified in a natural way. 

§5. Geometric n-covers 

We turn to the last topic in this work, a geometric treatment of global 

n-covers. We have worked until now in the framework of conventional modern 

algebraic geometry, in which the spectrum always refers to the prime spectrum. 

We would like now to switch to the context of geometry on affine rings as given 

in the work of Artin and Schelter [1] and to work with the maximal spectrum. 

Although this is denoted in the literature on non-commutative algebraic 

geometry by. Spec, we will denote it by Max Spec to avoid inconsistencies of 

notation within this paper. 

We give a geometric version of the definition of an n-cover, first in the afline 

and then in the global case. We recall that an attine K-algebra is one which is 

finitely generated as an algebra over K. In the commutative case it is said to be of 

finite type over K. 

DEFINITION. Let f: A---> B be an n-cover of a commutative affine integral 

domain A, as defined in § 1. The corresponding morphism of maximal spectra 

[: Max Spec(B)--~ Max Spec(A ) 

will be called an affine n-cover. 

REMARK. Since the algebra homomorphism [: A- -*B maps A into the 

center of B, it is an extension ([1], p. 290), and thus the correspondence between 

the maximal spectra is actually a function. 

DEFINITION. Let X = Spec(B), and Y = Spec(A). The X~ Y-topology on X 

has as its open sets the sets [-I(U) for U open in Y. 

REMARK. Since B is a finitely generated module over A, the closed subsets in 

the X / Y  topology are finite unions of Zariski closed subsets of Spec(B). 

EXAMPLE 3. Let A = K[t] be a polynomial ring in one variable, and let B be 

an algebra of rank 5 over A, whose general fiber is isomorphic to M2(K) × K, 

and whose special fiber at t = 0 is the five-dimensional algebra with two 

idempotents el, e2 and two elements O E e2Jel and or E e~Je2 satisfying a relation 

ptr = 0. (This algebra is designated as A* in [3].) For those familiar with 

representation theory, it has a quiver 
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O" 

and f l  is generated by the product trp. 

Over the general point of Max Spec(A.), Max Spec(B) has two points, 

corresponding to M2(K) and K. At t = 0, the point corresponding to M2(K) 

splits into what Artin and Schelter call a "cluster of associated points", in this 

case corresponding to the two idempotents el and e2. Let W be the Zariski 
irreducible subset of Max Spec(B) corresponding to the factor K. Then W 

intersects this cluster at the point corresponding to the idempotent el. 

- ( , , _ _ . _ - - . - - - - - - - ' -  
If '  

DEFINITION. Let Y be a commutative integeral scheme of finite type, and ~ a 
global n-cover. Let { U~ } be an open cover of Y over which each ~:(U~) is free. 

Let X~ = Max Spec(U~) for each i. Each X~ is a sheaf of topological spaces with 

respect to two topologies, the Zariski topology and the X,/U~ topology. The 

glueing algebra automorphisms ¢,j induce homomorphisms of topological spaces 

with respect to each of these topologies. Therefore the X~ glue together a 
topological space X with two topologies and a sheaf structure over Y. We can 

define a structure sheaf (Tx ([-I(U))= $:(U) in the X/Y-topology. 

EXAMPLE 4. Consider a global n-cover ~ which lies generically in the 
Kronecker component, and the corresponding space X. The generic fiber of 
p: X--~ Y has two points, corresponding to the two idempotents of the 

Kronecker algebra. The branch locus where these idempotents coalesce corres- 

ponds to the points where the algebra becomes local. This occurs when the 

section ~ corresponding to fl - f2 goes to infinity, or, correspondingly, where the 
section s E ~* defining the multiplication goes to zero. 

Appendix 1 

We wish to describe the procedure for constructing the parameter space to the 
versal deformation space, once the tangent space is known. The general 

procedure is given in Schlessinger's paper. We will make a slight adjustment in 

notation: the representing ring for C, will be denoted simply by R (instead of 

R,) and we set 
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R2 = K D q  . . . . .  . . . . .  7" y 

where T~ . . . . .  TN is a dual basis to the tangent space. We let a2 be the tensor 

corresponding to the deformation over R2 given by 

where/3 '  - k, - (b,j) is the structure constant tensor of a representative of the basis 

element corresponding to Tz. For any element v of the tangent space, substitut- 

ing T~(v) for T~, l = 1 . . . . .  N will give a representative of v. 

We set S = K[[T~ . . . . .  T~]], I = (7"1 . . . . .  TN). Set ./2 = 12, so that R2 = S/J2. 
We now proceed by induction. We want to define J3 to be the largest ideal such 

that J~ D 3"3 D 13, and a2 lifts to a tensor a3 over R3 = S/J3. In general, assume az 

and Jt have already been defined, we let J~÷x be the largest ideal such that 

J~ D Jt+~ D I t+~ and at lifts to at+~ over Rt+~ = S/Jt+~. 
Schlessinger proves that such a Jt exists for each /. We then set R® = lim Rz 

and let a~ be the corresponding limit of the t~. 

Since all the equations defining the representing ring are quadratic, we already 

have a great deal of information by the time we have constructed R3, and we will 

describe explicitly how this is done. 

In constructing the tangent space we took a general deformation tensor 

/3 = (b~) for i,j = 1 . . . . .  n - 1, k = 0 . . . . .  n - 1. Letting the b~ be variables, we 

generated two sets of equations: one, which we will call (*), consisted of 

homogeneous equations obtained from (a,/3) + (/3, a )  = 0. The second set, (**), 

was also homogeneous, derived from the automorphism relations. Since both 

sets were homogeneous, the solution space was a vector space, with certain of 

the parameters b~ serving as free parameters T~ . . . . .  TN. Assuming that this 

calculation has already been carried out, we cease to think of the b ~ as variables 

and consider them linear functions of the T~. In general each b~ is either 0, + Tr 

or - T~, but occasionally we get more complicated linear combinations of the 

free parameters. 
b~ + d~ for the general element of the tensor a3, where d ~ We now write a ~j + 

is a variable. We want to calculate the d~ as quadratic functions of T~ . . . . .  T~,. 

We no longer have to deal with eliminating automorphisms; that has already 

been done. Instead we get a non-homogeneous version (*)' of the system (*): 

(as, a3) ------ 0 (mod i3), i.e. 

(a +/3 + &or +/3 + 8)toO (mod i3). 
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We already know that the order term (or, a)  and the first order term (a, /3)+ 

(/3, ,v) are both zero. We must discover when the second order term 

(/3, 13) + (a, 8) + (& a)  = 0 (mod 13). 

We thus have the non-homogeneous system 

8)+(8, -(/3,/3). 

Js is the largest ideal for which this system is consistent. We begin solving the 

right-hand side and whenever we uncover an equation 0 = X q~jT, Tj we add this 

quadratic expression in the free parameters to the ideal ./3, simplifying subse- 

quent equations accordingly. We can make a further simplification. We need to 

find only one solution to the system. From any particular solution we can get 

many other solutions by adding solutions to the homogeneous system (*). The 

solution we found to (*) and (**) simultaneously is a solution to (*). Suppose b~ 

was one of the variables we chose to be a free variable %. 

We can create a solution to (*) by substituting - 8,~ for % and 0 for every 

other free parameter T~. Thus, whenever we have a solution (8) to (*)' we will be 

able to replace it by a solution (8') in which 8~=0.  This can be done 

independently for each of T1,.. . ,  %. Thus we may simplify our system at the 
p _  outset by assuming 8~j- 0 for those i, j, p for which b i~ was chosen as a free 

parameter. We could cut down the number of variables sill further if we would 

first find the general solution of (*) and only add the equations for (**) 

afterwards. However, this would increase the calculation time in the computa- 

tion of the tangent space. With a little experimentation it should be possible to 

determine which way is better. 

Appendix 2 

In the case where the algebra being deformed has several idempotents, it is 

possible to reduce the number of equations to be solved. In a recent preprint [10] 

the author has shown that any basis which is partitioned into blocks by a Peirce 

decomposition can be deformed to a basis with the same property. Similarly it is 

shown that matrix units can be deformed to matrix units. The deformation of the 

matrix units allows us to do a sort of Morita reduction to a basic algebra. To 

construct the deformation of the basic algebra, we can restrict ourselves to 

deformations of the radical which preserve the Peirce decomposition. The only 

infinitesimal deformations by which we must divide are deformations I + eM 

when M preserves the Peirce decomposition. This provides a considerable 
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reduct ion  in the number  of equat ions  to be considered.  With  this reduct ion,  

deformat ions  of algebras with 3 or  4 idempoten ts  for d imensions  up to a round  

fifteen can probably  be calculated with the current ly opera t ing  program.  
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