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ABSTRACT

We elassify affine, not necessarily commutative, n-covers B of commutative
K-algebras A using data triples (A, M, a} consisting of the algebra A, a free
A-module M of rank n—1, and an associative, unitary trace-zero structure
constant tensor a. We construct a versal deformation space for the deformations
of a K-algebra B, as a section of the completion at the tensor a, of B, of the
structure-constant scheme C,. In order to obtain concrete information about
the algebraic structure of C,, we show how this algorithm has been im-
plemented up to order 2. Finally, we globalize and geometricize the construc-
tion, getting a one-to-one correspondence between isomorphism classes of
global n-covers and isomorphism classes of triples (Oy, €, a), where Oy is the
structure sheaf of a commutative integral scheme Y, & is a locally free sheaf of
Oy-modules of rank n—1, and « is a global section of a sheaf X7-(%) of
structure constant tensors. We give examples in dimensions n =2,3, and 4 to
show how the structure of Hn-(€) can be analyzed as a functor of & using
information about C, obtained as above.
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§0. Introduction

This paper continues a very traditional line of research, the classification of
n-dimensional algebras over an algebraically closed field K, but it is viewed in
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the light of more modern developments, the Schlessinger deformation theory
and the non-commutative algebraic geometry of Artin and Schelter {1].

Our basic object of study is what we call an affine n-cover, an algebra B overa
commutative K-algebra A, which is a free A -module of rank n. Our first main
result is a generalization for all n of the “double cover data” in classical
algebraic geometry. Given an A-module M of rank n—1, we introduce a
functor ¥ _,(M). which consists of all structure constant tensors a which put a
multiplication on e,A €p M in such a way that M is the canonical submodule of
trace zero elements under left multiplication. The affine version of the theorem
then states

THEOREM 1'. The isomorphism classes of affine n-covers are in one-to-one
correspondence with the isomorphism classes of data triples (A, M, a).

In the final sections of the paper we replace the ring A by a sheaf of rings over
a (commutative) integral scheme Y of finite type, and we replace the free
A-module M by a locally free sheaf € on Y of rank n — 1. After sheafifying the
functor ¥, and letting a be a global section of #’_,(%), we then get our global
version of the result.

THEOREM 3. The isomorphism classes of global n-covers are in one-to-one
correspondence with the isomorphism classes of data triples (Oy, &, a).

This theorem is only interesting for general n insofar as we can obtain
information about %7, _,(€), and this is actually just a restatement of the classical
problem of classifying the irreducible components of the structure constant
variety C,. Thus in the middle section of the paper we apply the Schlessinger
deformation theory to give a parameter space for the deformations of an
algebra. This construction has been implemented on a microcomputer out to
second order terms, and we work out one example in detail to show that the
calculation is not only feasible but actually worth doing. The author has aiready
used the program in various contexts, usually for generating data on which to
conjecture general results about the classification and deformation of n-
dimensional algebras.

As final applications, we give globalized parametrizations of the semi-rigid
family in dimension 4 and the Kronecker component in all dimensions. We also
give a geometric interpretation of the global n-covers in Theorem 3, using the
maximal spectrum as the underlying geometric object.

The material is divided into sections as follows: §1 contains the definitions of
the basic functors to be used, the introduction of the trace module, and the affine
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classification theorem. In §2, the Schlessinger deformation theory is applied to
construct the versal deformation space and relate it to the structure constant
tensor scheme C, defined in §1. In the interest of accessibility to non-algebraic
geometers, this section has been left optional. In §3 we translate the theoretical
material in §2 into an implementable algorithm, and work out one example in
detail. The more algebrogeometrical parts of the argument are relegated to
Appendix 1. In §4 we return to algebraic geometry with the global classification
theorem 3, and the calculation of birational parametrizations of the semi-rigid
family in dim 4 and the Kronecker component. §5 contains the geometric
interpretation of the construction of higher order neighborhoods of the versal
deformation space, and Appendix 2 discusses the implementation of the
algorithm in light of the theorem in Schaps [10] about the deformability of
idempotents.

§1. The local theory of n-covers

Let Y be an integral, noetherian scheme over an algebraically closed field K.
That is to say, Y is a topological space supporting a structure sheaf Oy of
K-algebras such that each Oy (U) is a noetherian integral domain. Suppose that
n is an integer, prime to the characteristic of K if char K# 0. In algebraic
geometry there is a very rich theory of 2-covers, i.e., schemes X with p: X > Y
such that the structure sheaf Ox is a sheaf of 0, modules which is locally free of
rank 2. We wish to generalize some parts of this theory, specifically, those
dealing with formal deformations and with classification data, to the case where
the multiplication in the sheaf Oy is no longer required to be commutative.

The Noetherian and integrality hypotheses are intended to avoid difficulties in
globalization, and will not enter into the local theory we develop now.

DEFINITION.  Let A be a commutative algebra over K, an algebraically closed
field. Let n be prime to the characteristic of K if char K# 0. An affine n-cover B
of A will be an A-algebra B which is free as an A-module. The fibers
B @4 A/m of B over the maximal ideals m of A will be called members of the
family defined by B.

Since B is free as an A-module, the action of A on the identity of B
determines an embedding p: A — B. Since B is an A -algebra, the image of A
lies in the center of B. Thus it is irrelevant whether we regard B as a left or a
right A-module. We now fix this underlying A -module, so that we will be able to
concentrate on the variations in the algebra structure.
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DerFINITION.  Let V; be a K-vector space of dimension n with designated
basis ey, ..., e,-1. For any K-algebra A, define

V(A)= V,® A.

If A is understood, we will simply write V for V(A). Let V,C V, be the
(n — 1)-dimensional vector space generated by e,...,e._;, and let V(A)=
Ve A.

To assign a bilinear multiplication to V is to choose an A-module
homomorphism

p €EHom, (V,End, (V)).
Let V* =Hom(V, A) be the dual module. Then for any A-module M,
Hom, (V,M)> V*Q M,
since V is a free A-module,
Hom, (V,End, (V)= V*Q@End4 (V)
=V*Q@Hom,(V, V)
SVQV*QV.

Let us continue to denote by ey, . .., e,_, the images of the basis elements of V,
under the natural embedding of V; into the A-module V. Let e¢,..., eX-, be the
elements of the dual basis for V*, defined as functions on V by the property that
e*(e;)=8,. Here, and throughout the paper, §; represents the Kronecker
&-function, and equals 1 when i =j, but equals 0 when i# j. The tensors
et®e*Re, form a basis for V*Q V*Q V, and thus, via the isomorphism
described in the previous paragraph, for Hom, (V,End.(V)). A tensor a =
Saje*@e*®e, corresponds to a multiplication

) € €= 2 a'i’iep-

If p € Hom, (V,End, (V)) is the corresponding homomorphism, we can think
of p(e:) as being represented with respect to the given basis by a matrix [a7] with
rows indexed by p and columns indexed by j.

If we have an A -multiplication structure on V and we change the A-module
basis, we get an isomorphic A-algebra. Conversely any isomorphism of A-
multiplication structures on V is completely determined by the induced A-
module isomorphism. Thus the isomorphism classes of A-algebra structures
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correspond to the orbits in V*® V*Q V of the action of elements Q €
Aut, (V) via Q*®Q Q* @ Q, where Q* € Aut, (V*)is the element dual to Q. If
Q can be represented in a given basis by a matrix M then Q* is represented in
the dual basis by "M,

In order to make our A-multiplication structure associative and unitary, we
need to restrict our attention to those tensors (a;;) for which the corresponding
multiplication is associative and has an identity. In fact, we will go further and
require that the identity be the basis element e,. In this latter restriction we are
not following the standard modern treatment of algebra structures (Gabriel [2],
Happel [3], Mazzola [7]), but the choice of identity is necessary for our method.
Since we want to give the algebra conditions in a basis-free form, the only way to
ensure the existence of an identity is to specify one fixed element to be the
identity and specify that it multiplies the other elements of the algebra as an
identity element should.

We wish to describe these conditions by polynomial equations on the
coordinates (a}) of a tensor in V*®@ V*® V. The requirement that e,- ¢; =
e e, =¢ gives

(2) a(’;j = Sp,' and afo = 8,",.

The associativity, (ee;)e. = e (ee.), gives equations

3) 2: a},»afk—:i; ahay,=0.
In order to free ourselves of the choice of a basis, we define a bilinear form
(5, HVRVIOIVIQI(VIQVIQV)- VIR VIQV*RY,
WI® IR U, IR VIR V) =i (V)T R VIR VIR ve
—v¥0)i R TR i v

If & and B are two tensars, written as (a%) and (by) with respect to some choice
of basis ey,...,e, of V, then with respect to that same basis, (@, B) will have
coordinates

n—-1
ciu= 2 (ajbi—ajbi).
t=0
Equations (3) are then equivalent to the condition (a, a) =0.

DeriNniTioN.  We define an (affine) algebraic group to be a representable
functor ¢ from K-algebras to groups, as in [15]. The groups we need will all be
algebraic subgroups of
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G(A)= Aut, (V)= Auts (VLR A).

DerniTIoN. If Q € Aut, (V), let O* € Aut,(V*) be the dual auto-
morphism Q*v*(w)=0v*(Q'w). Auta(V) acts on any tensor algebra

(®. V)RR, V) via (K. Q)R (K. Q), where
(®.0M)R(X. QIR Qv - Qv.)
=Q0"1® - RQ*"TQ Q- & Qu,.
Let Qe a denote this action when @ € V*Q V*Q V.

LEMMA 1. All a €V*QV*QV with (a,a)=0 form a subset of
V*Q V*Q V which is invariant under the action of Auta (V).

Proor. One can cite, as a one-line proof, the fact that the associativity of an
algebra is independent of choice of basis. To give a direct proof via tensor
algebras we note that Q*v*(Qw) = v*w. Thus

<Q° i a:l‘e,'**®e7®el, Oo i a‘l"kel*®et®eq>

if=0 t"kg=0

= % 00t ®etRe1Be,).

ijk.g=0
If {a,a) =0, then (Qeca, Qca)=0.

DEeFINITION.  Let the algebraic group of affine automorphisms of V be given
by

HA(A)={0 € Aut, (V)| O(es) = ed).

This algebraic group & contains a normal subgroup J of translations by e,.
That is to say, the elements of 7(A) correspond to A-linear automorphisms of
V given by sending e; to ¢, —eya;, for a; € A,and i =1,...,n —1. The group &
contains another algebraic subgroup G such that G(A) corresponds to the
A-linear automorphisms of V which leave e, fixed and map the submodule V
onto itself. Then & is in fact a semidirect product of 7 by G. This decomposition
can be checked by taking a matrix representation of & and writing the matrices
in block form with respect to the decomposition of V as e,A @ V.

The identity equations (2), written in basis free form, are given by

€ V=0V"€ =10, foralv € V.

LemMA 2. This property is invariant under the action of HA(A)=
Aff Aut, (V).
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Proor. After acting by Q € Aut, (V), this condition becomes
Q(er): Q(v)=Q(V)- Q(en)=Q(v), VveV.

If Q € A(A) then Q(eo) = ¢y, and since Q is a bijection, we get the desired
condition.

DerinmTiON.  For any K-algebra A, let
.(ACVQRV*RQV
be the set of all tensors satisfying conditions (2) and (3).

DEFINITION. Let ¢ = (cZ) be a set of indeterminates for i,j,p =0,...,n—1.
Let

R, = K[cl/(c, ¢), coi— 8, Cio— 8;)

where 6 is the Kronecker delta function; C, = Spec(R, ) is called the variety of
structure constants.

THEOREM 1. %.(A) is a representable functor, represented by R,, and the
isomorphism classes of affine n-covers correspond to the orbits of 6, (A) under the
action of A(A).

Proor. We identify a tensor a € 6,(A) with the homomorphism R, — A
given by c¢;;— a},. The homomorphism is well-defined since the coordinates (a)
of a satisfy the defining equations of R,. Conversely, any homomorphism of R,
into A determines a tensor a € €.(A).

Any affine n-cover over A has an underlying A-module isomorphic to V.
Thus in order to classify the isomorphism classes of affine n-covers, it suffices to
consider only A-algebras B whose underlying A-module is V itself.

Suppose, first, that B and B’ are isomorphic A -algebra structures on V, with
structure constant tensors « = (a;) and o' =(a/’). The A -algebra isomorphism
from B to B’ induces an A -linear automorphism Q of V, sending the identity e,
to e,. Thus Q € (A). Let us represent the muitiplication in B by - and the
multiplication in B’ by *. Since we have an A-algebra isomorphism, ¢; - ¢; =
Safe, implies that Q(e)* Q(¢)==a;Q(e,). Thus we have two different
representations for a' with respect to two different bases,

a'=2aret®eiQe,

=3 af0*(eh)H R Q*(eH) R Qle,).
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The second sum is, by definition, Q o a, so a' lies in the orbit of o under the
action of A (A).

Conversely, let a be any element of €.(A), and Q any element of #4(A). By
Lemmas 1 and 2, Qoa is also an element o’ € 6,(A). Let B, B’ be the
A -algebra structures on V corresponding to @ and a'. The representation given
above of «' in the basis Qf(e),..., Q(e,-;) shows that the A-module
homomorphism Q induces an isomorphism between B and B'.

For any affine n-cover, not necessarily with underlying A-module V, we
choose an A-module isomorphism between its A-module and V in order to
associate to it an orbit of structure constant tensors. If we had chosen a different
A-module isomorphism, the two isomorphisms would have differed by an
automorphism of V. Thus, by what we have just proven, both isomorphisms
would have given the same orbit, and the mapping from isomorphism classes of
affine A -covers to orbits of 6, (A) is thus well-defined and bijective. Q.E.D.

DerINITION.  The n-fold point is the affine scheme whose underlying algebra
is the unique local radical square zero algebra

K[x1, ..oy Xaa) (X1, .o oy Xnca )

Remark 1. The n-fold point lies in the closure of every orbit of C, as a
specialization at A = 0 of the family of automorphisms of V given by multiplying
every element of V by the non-zero scalar A ™. Thus the orbit of the n-fold point
is the unique closed orbit in C,.

ReMARK 2. The history of C,. C, has been studied for over a hundred years,
though not necessarily in the detail it deserves. We review what is known. The
commutative algebras are always contained in a single irreducible component
with an open orbit corresponding to the semisimple commutative algebra, which
is a product of n copies of the underlying field K. For n =2, C, is a plane
containing a quadric which is the orbit of the 2-fold point. For n =3, C; has two
components, the commutative component of dimension 6 which is an affine
space, and a second component of dimension 3, also an affine space, whose open
orbit corresponds to the algebra of upper triangular 2 X 2 matrices. For n =4,5 it
is known which orbits are contained in the closures of which other orbits and
thus what are the irreducible components. For n =4 there are five irreducible
components (Gabriel [2]) and for n =5 there are ten (Happel [3], Mazzola [7]).
For n = 6 there is an old list of the algebras (Voghera [14]) probably containing
errors and not organized by specialization properties.
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The algorithms described in §3 of this paper are intended to permit a closer
study of the sturcture of C, as an algebraic scheme: the nature of its singularities
and the way in which the orbits fit together. We hope to give a complete analysis
of the algebraic structure of C, in another work, and in the meantime we will
bring two examples from C, in the course of this paper.

We return now to the theoretical discussion. Although the functor €,(A) is
quite satisfactory for studying the local theory, the globalization in §4 requires
that we allow variation in the underlying A -module, or, more precisely, in the
module V complementary to the identity. In order to choose such a complemen-
tary module in a canonical way, we will then resort to the trace map.

DEFINITION. Let % be the category of pairs (A, N) where A is a K-algebra
and N is a free A-module of rank /. A morphism (f, 8) from (A, N) to (A’,N")
will consist of an A-algebra homomorphism f: A— A’ and an A’-module
isomorphism 6: N @4 A’ = N'. Every such morphism factors as

(f,id) (id, 8)

(A7 N)_) (A!’N®AA')_) (AI, N')

DEerFINITION.  Let us denote ¢,K @« A by e,A. For any A-module M of rank
n—1, we denote by M the rank n A-module e,A @ M. This determines a
functor H,: %,..,— %, given by H,(A, M)=(A,M). In particular,
H,(A, V(A))=(A, V(A)).

DerINiTION.  For any (A, M) € %,-,, define

HolM)a CM*QM* QM
to be the set of all tensors a satisfying the conditions
4 (@, a) =0,

(5) eov="1v"-e,=u,forall v EM, with respect to the multiplication given by a.

If (f,0): (A, M)—(A',M’) is a morphism in %,_;, then we get an induced
morphism

(£,0):MRANQIMIOA)N QMOA)>M*QM* QM.

If 6 =id, we will denote this by £, and if f = id we will denote this by 8. We set
H,-1(0); = (f, 8), restricted to K, ,(M)a.

Cram. H,-«(M), is a functor.

If : M,— M, is an A-module isomorphism, then 8: ¥,_,(M)s = K,-«(M:)a
is obviously a bijection. The functoriality of ¥,_,(M). with respect to A -algebra
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homomorphisms f: A— A’ follows from the functoriality of
%"_I(V(A))A = %,. (A).

The verifications are standard.

In Section 4, we will generalize this functor so that A can be replaced by a
sheaf 0y of K-algebras, and M can be replaced by a locally free Oy module & of
rank n — 1. However, in order to make & an object which can be recovered in a
canonical way from the resulting algebra structure, we first replace the functor X
by a subfunctor #° defined by using the trace map.

Letting B be any n-cover of A with additive A-module V, the left
multiplication gives an algebra representation

p: B—End.(V).
If we follow p by the trace map, we get an A-module homomorphism
Trp: VoA

This determines a “trace zero” submodule V C V, where V =kerTrp. If ¢, is
the identity element, then Trp(eo) = n#0, so

V=eAPV.
Any v € V has a translate

7() = 0= Trip(o))eo

which lies in V, and any other translate of this element will not lie in V. Thus
given any basis {e,, ey, ..., €.} there is a unique translation T € J which maps
each ¢ for i#0 into V.

DEFINITION.  Let #°_,(V) be the set of all tensors a € ¥,_,(V) such that
©®) Trp. | V=0,

p. defined by the multiplicative structure determined by a. Let €%(A) be the
corresponding subset of 4,(A). Denote Trp, | V by Tr(a)".

DerNmmioN.  Let R%= R, /(3]0 ¢})i-1, and let C5 = Spec(RY).

REMARK. In C) the orbit of the n-fold point is a single point, and the
dimension of every other orbit is n — 1 less than the corresponding orbit in C,.
Thus, for example, C; has two components of dimension 4 and 1, intersecting in
a single point.
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LemMa 3. H0_,(M)a is a functor from F._, to ((sets)) and thus 6€5_(A) isa
functor from K-algebras to ((sets)), represented by R.

ProOF. As described above, any morphism (f, 6) in %,_, induces a morphism
(f, 8): H.oiiM) 4 = H,_1(M")s-. Furthermore, this morphism factors naturally
into a composition of (f,id), denoted by f, with (id, 8), denoted by 6. Thus it
suffices to show that f and 6 map the trace zero structure constant tensors to
trace zero tensors. We first consider f: #,_;(M)a — H._.(M @4 A')a-. Since
Tr(f(a))” = f(Tr{a))”, we see that Tr(a) =0 implies that Tr(f(a)) =0, so
FEH_(MW)CHYA(M@aA)a. Now consider 0: K, ,(MQ1A)a—
H.-1(M")a . Letfy,..., f.1 beabasis for M @4 A’ as afree A'-module. A tensor
a lies in H°_ (M ®a A')a if and only if its coordinates (a’) with respect to the
basis eo, fi,. .., fu satisfy =[5 ai,~=0 for each i =1,...,n—1. 8(«) has the
same coordinates with respect to the image basis e, 0(f1), . . ., 6(f.-1), and since 8
is an isomorphism, 0(f.),..., 0(f._,) generate M’', so 0(a)E X i(M')a, as
required.

%" is the composition of two functors, and is thus itself a functor. The
representability of €% by RS, follows from the representability of €, by R.
proven in Theorem 1 and from the trace zero condition on the coordinates given
in the first paragraph of this proof.

Lemma 4. For n>2, a tensor a € X,., is completely determined by its
projection ra onto V* Q@ V*Q V.

Proor. The A-module homomorphism 7#: V*Q V*@Q V- V*Q V*® 1%
is induced by the dual i*: V*—» V* of the injection i: V— V, and by the
projection #: V— V. Thus it suffices to show that the elements a$ for i - j#0
are completely determined by the elements aj; for i - j - t#0, since the coordi-
nates of a for i =0 or j =0 are fixed by the identity condition (5). Since
a € X, (V), it also satisfies (@, a) = 0. In order to find a§, we look at (a, a)j for
any k#0,i. We get an equation

m
k k
2 a;as—aja;=0.
=0
Since ag, =1 and aj; =0 by (2), we have
m
0 k k
aj= - (2 ajah— a}kai.)
=1

= —(fa, 7 Vi Q.E.D.
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ReMARK. If a € %, (V), then for i# k, (#a, 7a )y and (7a, 7a )y are inde-
pendent of k and i respectively, and (dra, 7a )y = 0 for other values i, j, k, q=
1,...,n

We now reformulate Theorem 1 in terms which will be appropriate for
globalization.

DerINITION.  Let 9, be the category of triples (A, M, a) such that A is a
K-algebra, M is a free A-module of rank n—1, and a EX_,(M)a. A
morphism is a triple (f,6,(f,0)):(A,M,a)>(A',M',a’), where
{f, 8): (A,M)—(A’, M") is a morphism in %,_,, and (f, 8)(a)=c'.

DerFmniTiON.  For any n-cover B of A, let E(B) be its trace zero module, and
let

a(B)E X' (E(B))

be its structure constant tensor. Conversely, for any n-cover data triple
(A,M,a)E D, let M be the A-algebra with underlying A-module M and
structure constant tensor a.

THEOREM 1'. The isomorphism classes of affine n-covers are in one-to-one
correspondence with the isomorphism classes of data triples (A, M, a).

Proor. Consider the functions
B — (A, E(B), a(B)),
M, (A M, «a).

The composition B — (E(B)).s, is a natural isomorphism obtained by sending
the identity element of B to e, € E(B). Now consider the composition from
Dy — D,.. Since E(M.)=M, and a(M,)= «, this composition is actually the
identity. We conclude that we have an equivalence of categories, and thus a one-
to-one correspondence between isomorphism classes.

§2. Formal moduli of n-dimensional algebras

Let £ be the category of local Artin algebras over the algebraically closed
field K, and let £ be the category of K-algebras which are inverse limits of
directed systems of elements in %, all of which are complete local rings over K. A
functor F on £ is called prorepresentable, if there is an object R in £ such that
F is isomorphic to Homg (R, - ). It is said to have a prorepresentable hull R if
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there is a morphism of functors Homg (R, A)— F(A) which is surjective for all
A, and an isomorphism for the tangent space.
Let B, be a K-algebra of dimension n.

DermITION. A deformation B of B, over a K-algebra A is an affine n-cover
B over A, together with a given isomorphism b @4 K= B,. Identify the
underlying vector space of B, with V,, and let a, be the structure constant tensor
of B,. Define

ol A)={a E6.(A)| & ®aK = ao}.

%.a(A) is acted on by the subgroup o, (A) of #(A) consisting of all auto-
morphisms Q € #(A) such that Q @4 K = Iy,. The orbits of 6., under the
action of this group will consist of structure constants whose corresponding
algebras are isomorphic not only as affine n-covers but also as deformations.

Extending the Schlessinger deformation theory to the case in which B, and B
are not necessarily commutative, we define the deformation function Dz (A)on
&£ to be the set of isomorphism classes of deformations of B, over A. Dg(A)can
be identified with the set of orbits of €,..(A) under the action of s, (A). Let
K[e], €* =0 be the two-dimensional algebra of the two-fold point.

THEOREM 2. €., on £ is a prorepresentable functor prorepresented by the
completion R, ., of R, at ao. Dy, has a prorepresentable hull whose tangent space
Du(K[e]) can be canonically identified with a quotient of 6,..(K[e]) by the orbit
of ao under the action of s4,(K[e]).

ProoF. The prorepresentability of €6,., on £ is a direct consequence of the
representability of €, in the category of K-algebras. We have an isomorphism of
functors taking @ € %,(A) to 8, € Homi'(R,, A). If a € 6,.(A) for AEZ,
then a @4 K = a, implies that 6, factors through the localization R, ., of R, at
a,. Furthermore, since A, being an Artin algebra, is complete, 8, further factors
through the completion R,,, of this local ring. Conversely, any algebra
homomorphism 8 in Hom(R,.,A) determines a =(6,(c;)). The mapping
6 — a, is one-to-one, since 6 is completely determined by the images of the
generators c;.

We wish now to identify D (A) with the set of orbits of 4,,,(A) under the
action of o (A). We know from Theorem 1 that isomorphism classes of
n-covers are in one-to-one correspondence with orbits of €,(A) under the
action of . Since we have chosen a fixed identification of the underlying
K-vector space of V, with B,, two structure constant tensors @ and a’ belonging



80 M. SCHAPS Isr. J. Math.

to the same orbit of #/(A) will give isomorphic deformations if and only if
a @i K =a,=a' Q4K However, since a' = Q ° a, this is equivalent to requir-
ing that Q ®4 K = Iy,. Conversely, if a'=Qca for Q € #(A), then V, is
isomorphic to V,., not only as an n-cover but also as a deformation.

In order to show that Dj, has a prorepresentable hull, we have to show that
conditions (H1)-(H3) in Schiessinger [12] are satisfied. We write D for Dg,. Let
u': A'— A be a homomorphism of Artin algebras from &, and let u": A"— A
be a surjection from the same category. We consider the map

h: D(A'X, A")— D(A")Xp, D(A").

(H1): We must first show that h is surjective. Let n’ € D(A'), n € D(A) and
1n' € D(A") be isomorphism classes such that ' and 7" reduce to n after
tensoring by A. We chose representative structure constant tensors a’' €
%.0(A") and a"€%,,(A") for 7' and 7". Let B'=a’'@a A and B"=
a”"®a- A. By hypothesis B’ and B” determine isomorphic deformations, and
therefore lie in the same orbit of €, .,(A) under the action of &/;(A). Thus there
is an A -module automorphism Q € &;{A)of V(A)such that 8’ = Q- 8", Since
A"— A is surjective, Q can be lifted to an A-module automorphism Q" &
Ai(A"). Set y"=Q"°a". Since Q"PQa-K=Q®sK=1I we find that
7" Q- K = ag, so ¥" and a” lie in the same &, (A") orbit, showing that y” is an
alternative representation of the isomorphism class %", with the additional
property that y"®.- A = B’. We now form the fiber product

a=a Xgy"
@ lies in 6, (A’ X4 A") because substitution of the coordinates of & into the
defining equations of R, gives elements of A’ X, A" which vanish under both
projections and thus vanish altogether. The algebra on V(A'X,A") with
structure constant tensor & is a representative of the element of D(A’'X, A")
which maps to n in D(A’) and 5" in D(A"). This proves (H1), that the map is
surjective.

(H2): Let K[¢], €* =0 be the algebra of the two-fold point. We need to show
that if A =K and A" = K|e], then

h: D(A,XAA”)* D(A’)XD(A)D(A”)

is a bijection. We will in fact show this when A = K and A”— K is an arbitrary
homomorphism of K-algebras, necessarily surjective. Let A = A’ XxA". Since
we have already shown that h is a surjection, it remains to show that it is
one-to-one. More specifically, if 7 € D(A), and @ is a representative of the
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corresponding orbit to %,.{A), then we need to show that the orbit of & is
completely determined by the orbits of its images a' € €,.{(A’) and «"E
%.o(A"). Suppose Q' € of;(A’)and Q" € o (A"). Since both Q' and Q" reduce
to I in &4, (K), we can form the fiber product Q = Q’%;Q" which will carry & to
Q- a, a structure constant tensor which reduces to Q'ca’ in %.,.(A’') and to
Q"ca" in €, (A").

(H3):  dimkDa(K[e]) <dim €,.(K[¢])
=dim V(K[])*Q V(K[e])* ® V(K[e])
=8n’.

Thus the tangent space is finite dimensional.

It remains to demonstrate that there is a natural projection of 6, .,(K[¢]) onto
Dy (K[e]). Let m be the maximal ideal in a prorepresenting hull R of Ds,
constructed as in Schlessinger’s theorem, and let 11 be the maximal ideal of R, ,,
the prorepresenting ring for €,,,. In the Schiessinger construction, the Zariski
tangent space (m/m?)* of R is canonically identified with D(K[e]) and similarly
(rii/m?)* is canonically identified with €,.(K[e]). D(K[¢]) has a prorepres-
enting object

R{x,,..., x,._l)/(xix, - 2 c’;x,,)

which is the image of the identity under the surjection Homg (R, - )— D. Any
element s € (m/m?)* extends naturally to a functional s on m with kernel m?,
and determines a ring homomorphism R — K[e] by sending each c; € m to
es(c}). This homomorphism then induces an element of D(K [¢]). Similarly, an
element s of (/rm*)* induces a homomorphism R, .,—> K[e], which takes the
representing structure constant tensor to (aj+ eb;) € 4, ..(K[£]), where (a}) is
the structure constant tensor a, of By. €...{K[€]) has a vector space structure
induced from that of (i/m”)*, and D(K[e]) has a vector space structure
induced from (m/m?)*. The elements of 6,.(K[e]) are all those tensors such
that

(a’+ebl,al+ebly=0 and biy=by=0.

The elements of D(K|¢]) consist of the isomorphism classes of the correspond-
ing algebras

K[eKxo,. .., xn_1>/ (xixf -2 (a5~ ebZ)xp) :
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The kernel of the corresponding homomorphism of vector spaces
%..o(K[e])— D(K|[e]) is precisely the set of all a’ € €,..,(K[e]) such that the
corresponding algebra is isomorphic to By, i.e., is the orbit of a, under the action
of o, (K[e)).

§3. Construction of the versal deformation space

Having proven the existence of the versal deformation space in §2, we now
proceed to the more practical problem of constructing it. The method we give for
constructing the tangent space has been implemented on a microcomputer,
which is sufficiently powerful to handle algebras of low dimension (n = 10) with
sparse multiplication tables. For larger n the program would have to be
transferred to a larger computer.

For those who skipped §2, we will give a brief description of the object we
wish to construct. Let @ be a structure constant tensor lying in the variety of
structure constants. We wish to find all deformations of the corresponding
algebra B,, i.e., all algebras B, whose structure constant tensors lie “close” to a.
We want, in fact, to find a certain number of parameters T, ..., Ty such that the
coordinates of a’ will be polynomial functions of the coordinates of a« and
formal power series in the variables T,..., Ty. If they are also polynomial
functions in the T;, then we say that the space is algebraicizable. We further
require that all the B,. be non-isomorphic to B,, a condition which insures that
our parameter space has been chosen as small as possible.

Except in exceptional cases (like algebra (24) in Mazzola [7]) the parameter
space is a completion of a section of C, transversal to the orbit of a under the
group action on C,. However, since C, is defined by a large number of quadratic
equations, its structure is difficult to compute. Thus instead of starting at C, and
cutting down, we start at « and build up. We first construct a minimal family of
first order deformations; this is the object we call the tangent space. We then try
to extend these first order deformations to higher orders.

Construction of the Tangent Space

We take the simplest possible Artin algebra with non-zero radical,
K[e]= K[t]/(t*). A deformation of B, over K[¢] is an associative algebra with
identity, B,., such that B, @« K = B,. This corresponds to a structure
constant tensor a’' = a + ¢ € €, (K[¢]).

LemMA 6. For each a € €,(K), the tensors B E V*Q V*Q V for which
a + &B lies in €,(K[e]) form a linear subspace W defined by the conditions
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@) (@, B)+(B,a) =0,
) B(eo®v)=B(vRe)=0 forveEYV.

Proor. From the definition of 4., the conditions for e, a + 8 to be in 4, (K)
and €, (K[e]) respectively are

@) (a,a)=0; (a+eB,at+eB)=0,
and
6) a(eo®@v)=(a+eB)eo®@v)=0 and a(vQe)=(a+eB)(vQe)=v.
Using the fact that £* =0, we get
e((a, BY+(B,a))=0
and
eB(v @ eo) = eflec @ v) =0.

Multiplication by &€ does not annihilate any elements of K, so we get (4') and
(5") as desired. Q.ED.

As a second stage we want to eliminate the trivial deformations determined by
infinitesimal automorphisms.

DerNITION.  Two tensors 8 and B’ are equivalent if B,,.s is obtained from
B, ..z by an automorphism Q =1+ ¢M which is the identity when &£ =0.

ReMARK. It will frequently be the case that 8 and B’ are not equivalent in
this sense, yet B,..; and B,... will be isomorphic via some automorphism Q
which is not in the form I + eM. A fuller discussion of this phenomenon is given
before the example after Lemma 8.

LemMma 7. B and B' are equivalent if and only if they lie in the same coset of
the vector space U, C W, consisting of all tensors ¢(M)a, where (M) is the
operator defined on V*@Q V*Q V by the formula

JM)=IQIRM-IQMRII-TMRIIRL
M ranges over all n X n matrices with first column zero.

Proor. By the definition of equivalence given above, and by our discussion
in §1 of the effect of an automorphism of B, on «a, we see that 8 and B’ are
equivalent if and only if there is a matrix Q = I + ¢éM € Aff Aut V(K|¢]) such
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that
a+ef =(Q*QQ*Q Q)a+ep).
Substituting for Q, and using the fact that £* =0, we have
0*XQ*XxQ="(I+eM)"Q (I +eM)" QI + eM)

=(I-¢e M)QU - "M)QU + eM)
—IQIRI+e(IRQIQOM-IQ™MRI-"MRIRI)
= IQIRI+ey(M).

Again applying £° =0, we get

(Q*®Q*QQ)a+eB)=(IRIQD(a +eB)+ ¥(M)(a +eB)
={(a + eB)+ s(M)a.

thus a + B is equivalent to « + B’ if and only if B’ =B + ¢(M)a.

I+ eM € Aff Aut(V(K[e]))if it is invertible and its first column is identical to
the first column of I I+ eM is always invertible with inverse I — eM. Thus the
only condition on M is that its first column must be zero. The set of all such M
form a.subvector space of the set of n X n matrices, which we will denote by
aff aut(V(K)). (The notation is intended to reflect the fact that it is the Lie
algebra of the algebraic group Aff Aut(V()), though we make no explicit use of
this fact.) Since ¢ is a linear operator on the nXn matrices, U, =
{¥y(M)a | M € aff aut(V(K))} is a vector space. Thus B and B’ are equivalent if
and only if B'E€ g+ U,.

We wish to pick one element out of each coset. For our purposes the simplest
way to do so is to choose a non-degenerate bilinear form ( , )and consider the
orthogonal complement U, to U, in W,.

LEMMA 8. Let U,C V*Q V*Q V be the linear subspace consisting of all
tensors B € V* @ V*Q V satisfying the following linear equations:

@) (aB)+(B,a)=0,

() B(v®e)=PBee@v)=vforallve,

(i) (B, y(M)a)=0 for all n X n matrices M with zero first columns.
Then U contains exactly one B from each equivalence class of tensor B such that
B...s is a deformation of B, over K|¢].

Proor. Since W, = U, @ U;, each B' € W, has a unique projection to an
element B € UL. This B is, by Lemma 7, the unique element of the equivalence
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class of B’ lying in W,. By Lemma 6, the elements of W, give all first order
deformations.

RemArk. This U is isomorphic to the tangent space of the deformation
functor, which consists of all first order deformations modulo infinitesimal
isomorphism.

Implementation

Lemma 8 gives a large system of linear equations for the coordinates of B8, with
coefficients determined by the coordinates of a. The author has written a
computer program which takes as input the non-zero entries in a, generates this
system of equations, and solves it. In order for the program in its current forms
to work effectively, @ must be sparse in the sense that most of its coordinates are
zero, but most algebras are given in a normal form for which this is true. Group
algebras are a notable exception to this rule, but group algebras are semisimple
and thus have no non-trivial deformations.

DEFINITION.  An algebra is rigid if its orbit is dense in some component of C,.
A family is semirigid if the unions of the orbits of the algebras in an open subset
of the family gives a dense subset of a component of C,. The general algebra in
the family will also be called semirigid.

Every component of C, is the closure of the orbit of either a rigid algebra or a
semirigid family. In dimension 4 there are four rigid algebras and one semirigid
family, while in dimension 5 there are nine rigid algebras and one semirigid
family. In dimensions n = 6, the rigid algebras are semisimple or radical-square
zero, except for the rigid algebra of upper triangular 3 X3 matrices. The
parameters of the semirigid families enter at the level of the radical-square.

If we can find a way to generate all candidates for rigid algebras and semirigid
families, then they can be distinguished from non-rigid algebras by the tangent
space of the deformation space, the object described in Lemma 8 and computed
by the computer program. An ordinary algebra has first order deformations
which are not equivalent but which are isomorphic. That is to say, given a
structure constant tensor a, one can usually find deformations a +¢f and
a +¢B’ such that B,., is isomorphic to B,.. via some automorphism
Qe Aft Aut(V(K[e])), but Q is not of the form I+eM. This happens
whenever the orbit of a is contained in the closure of an orbit O{a’) of larger
dimension, for in that case the stabilizer of « is larger than the stabilizer of a'.
Suppose we could find a rational curve of structure constant tensors &(f)=
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a + tB + - - - whose generic element was in the orbit of a’ but which equalled «
for t =0. Take Q to be an element of Aff Aut(V(K)) which lies in the stabilizer
of & but not in the stabilizer of @(t) for general t. Q operating on &(¢) will give a
new curve a + 18’ + t3.- - - . If we consider &(t) as a formal power series and mod
out by t?, we conclude that Q o (a + ¢8) = a + £B’. Thus we get isomorphic but
non-equivalent first order deformations.

The only cases where this does not occur are cases where « is not contained in
the closure of any other orbit. These are usually the cases of interest to us: the
rigid and semirigid algebras.

The author has a student, Thierry Dana-Picard, working on the problem of
generating and checking candidates for- rigid algebras, using the program
described above. The problem of locating semirigid algebras is somewhat more
difficult.

Trace Zero Case

As was shown in §1, every algebra is isomorphic to a trace zero algebra.
However, for calculating the tangent space it is important that the multiplication
table be as sparse as possible, and thus it is not generally wise to translate the
algebra to the trace zero form.

For local algebras the simplest form of the multiplication table often is in trace
zero form, and if so we can take advantage of this fact. In place of all the
equations (B, ¢(M)a) given in Theorem 2, we use only the equations for which
the first row of M, as well as the first column, is zero. This makes I + &M an
element of G(V(K[e]), and gives us the general infinitesimal automorphism
leaving the image of a trace zero. In place of the m equations we have removed,
we add n equations requiring 8 to be trace zero:

3}1+...+B;"'"=0
fori=1,..., m Thus both @ and a + ¢B lie in €3(K), €(K[¢]) respectively.

ExampLE 1. Every finite dimensional algebra with structure constant tensor
a has a linear deformation to the n-fold point given by

m
- -0 .
X X = 2 tagx, +t2ax,  for i,j>0.
p=1

When ¢t goes to zero, we get the trivial multiplication x; - x; =0forall i, j > 0.

If all the af,=0 for i,j >0, then the equations {a,B)+(B,a)=0 used in
defining the tangent space are all trivial. Furthermore, all of the tensors ¢(M)a
are equal to zero, for M mapping V =(x,,...,X,) into itself. Thus the only
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non-trivial infinitesimal isomorphisms are the translations. Since 2 aj;=0 for
each i >0, we are in the trace zero case. Therefore we can assume that we use
the equations appropriate to the trace zero case. Since these are the defining
equations of the variety C; of trace zero structure constants, we see that the
versal deformation space of the n-fold point is algebraicizable. The formal
parameter space is the vertex of C), when regarded as a cone with respect to the
action

a;—ta; forij>0,
a,— r£as.
A Versal Deformation Space Which is Not Irreducible

Exampie 2. Find the versal deformation space of B> K|[x, y)/(x?, y*) for
K =C. As a K-vector space, B has dimension 4, with basis x,=1, x; =x, x, = y,
x; = xy = yx. Thus B = B,, where a is the tensor with a3, =a},=1and a;=0
for all other i - j# 0. Since the calculation is somewhat complicated, and will in
fact fill up most of the remainder of this section, we will divide it into
subcategories.

ExampLE 2 (contd.). Calculation of first order orbit of a

Let us determine what are the various ¢(M)a for this a. We first note the
general fact that if v is the tensor of the n-fold point, then ¢(M)v =0 for all
M =gI(V(k)), since the n-fold point has a presentation which is stable under the
action of the automorphism group of V. We see that we need only consider
Y(M)a, where a is obtained from a by replacing all entries with i - j =0 by 0.
Letting Ej=et®e*Qe, we have @ = E}, + E3,. Let Eu =e*t® e.

We need to describe the action of (M) on a basis element E;j of
V*Q V*Q V. Letting M =[my,] we have M = myE,,,

M-e = 2 mgye,
q=1
and
et TM=Y myet.
q=1
The summations begin with q =1 because my =0 for all k- =0. Since

yM)=IQIRM-IQ™MRN~I-"MRIIR L we get

Y(M)E;= Z muEj— mgEi;— myEy.
=
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Thus in our case
(N $(M)EL+E))= 21 my(EL+ ES)— myg (Bl + E3) — my, (B3 + E3).
&

We first wish to calculate the dimension of the stabilizer of a. We note that ms,
and m,; do not appear in (7), so E; and E;; Estab(a). We also have
2E;;—E»—E., and Ex—E,. These generate the entire stabilizer since
dim gl(V(k))=9, and we have five linearly independent tensors,

'l‘(Eu)a = E}2+E;|" ga“ :3;2, lIJ(Ezl)a =2E?l’ lP(Esa)Ol = ?2+E;1,
Y(Ex)a = EL+E;—E}L - gl, Y(En)a =2E3},.

EXAMPLE 2 (contd.). Equations for the orthogonal subspace

We wish to construct R;. Letting y = (c}) with ¢;;=0for i - j =0, and letting
the inner product be the usual inner product ( , ) for a vector space over K
with basis E’;, we find that condition (iii) of Lemma 8 gives us five equations:

—¢h—cnptcn=—ch cn=0, c:=—c3,
3 2 2 3
—ch—cutch=—c¢ch, ¢»=0.
ExaMmpLE 2 (contd.). Associativity equations
We now apply condition (i), (a, ¥)+(y,a) =0,
N q q q q
t
2 aiC o a;kCu‘*' C:ialk_ C;'kau: 0.
=0

We recall that aj;=0 except for ai;, a, ac. @i, which equal 1. We have two
symmetry transformations: interchanging 1 and 2, and switching the bottom two
indices, while simultaneously interchanging i and k. We consider all possible
equations according to different values of i, j, k and q.

Dividing into 15 cases according to the values of i, j and k, we get information
from the following cases, after applying all symmetry transformations.

j= k=3,i=2: Ctljs: C(S)l = ng, C(2)3= C(312= C;J, C(3)3=0-

j=3,i=k=2,9=3 ch=ch,

ch=ch.
j=3,k=2,i=1,q9=3 ch=ch; ch=ci.
i=j=2,k=3,q=3 ch=cu=cy; chi=ch=ch.

; : —_ 2. o _ 3 2, 0 _ 3 1
j=2,i=1,k=3,q9=3: co=—cu+tch cn=—Cutcn.



Vol. 58, 1987 MODULI OF FINITE COVERS 89

j=2,i=1,k=2,49=0: c=c%=0; chy=c5=0.
j=2, k=2, l=1, q=3 Cg2=cgl=c:;3=cg3=0.
i=2,k=2,i=1,q9g=2: ¢h+ch=0; ck+c5=0.

ji=2,k=1,i=1,¢=3: cii—ch+ch—-c}=0,
C§2—C33+C;1_C:2=0-
j=2,k=1,i=1,q=1: ¢y—ci+ch—c$ =0,

2 2 0 0
cp—cuntcu—ciz=0.

ExAMPLE 2 (contd.). Solving the system

Adding on the trace criterion, we have ¢}, + ¢i,+ ¢}, = 0. Since ¢}, =0 we get
¢ = —ci. Similarly ¢5,= —ch. chitch+ch=2¢h=0s0 ch=cy+c%=0.

Finally, we add the equations obtained from ¢(M)a, now simplified by the
substitution

ch=ch=cl=c3 =0 above.
The end result of combining all the linear conditions is the following tensor:

t=0 t=1 t=2 t=3

a 0 0 000 e 0 a 0 -f O
0 a O 0 e a 0 00 f 00
0 00 0 a O a 00 0 00

1 1 0
A=Cpn=Cn=Cn,

2 2 0
a'=ci3=cy=ci;

_ 1
e = cZZy
e'=ch,

3 3
f= €= —Cha

The tangent space of Spec R has dimension 5.

ExaMmpLE 2 (contd.). Second order deformations
Applying a computer implementation of the method in Appendix 1 to
calculating the second order deformation produces equations

a-f=a'f=e-f=e-f=0

for the parameters. Thus the parameter space is reducible, consisting of one
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component satisfying a =a’=e = ¢’ =0 and one component satisfying f =0.
As explained in Appendix 1, there are many possible deformation spaces for this
parameter space. It suffices to give one example:

xi=a'+ex,,
x3=a+ex,

x1x2 = (1+ f)xs,
xx=(1- f)xs,

X1 x;s=a'x,+ ae' +ee'xy,
XX, = a'x,+ ae' + ee'x,,
Xx;=ax,+a'e+ee'x,,
XX, =ax,+a’'e+ee’'x,.

ExXAMPLE 2 (contd.). Interpretation and summary
Finally, we consider the completion of the process from second order to power
series. We calculate the two components separately:

(A) The non-commutative component. The given deformation is non-
commutative only when f# 0, in which case

’

a=a'=e=¢e'=0.

Thus we have a single parameter and every product is zero except for
X1 X2 = (1 + f)x;;,
X2 Xy = (1 - f)x;.

Every product (x.x;)x, and x;(xx.) for i,j,k =1 is zero, so all associativity
conditions are fulfilled. Thus the deformation extends to all orders, and we get a
linear, one-dimensional parameter space with parameter f. This is a semirigid
deformation since two such algebras for f and f' are isomorphic if and only if

f=-forf=f

(B) The commutative component. In the second component, f =0. We then
have x;x, = x; = x,x; and the deformation is commutative, since we also have
X:1X3 = X3X; and x,x; = x,x;. Let x; = x, x, = y, and x; = xy. The general deforma-
tion given above is then entirely determined by the commutativity relations, the
associativity relations, and the two equations



Vol. 58, 1987 MODULI OF FINITE COVERS 91

xZ — a’+ely,

2 _
y =a+ex

For example,
X1X3 = X1(X1%2)
2

= (x)x.
=(a'+e'x)x,
— ! 12
=ax,te'x:
=a'x,+e'(a+ ex,)
=a'x,+e'a+eex.

The algebra we are deforming is a complete intersection and thus its first order
deformation can be lifted to all orders, giving a smooth parameter space of the
same dimension. In this case the dimension is four and the parameters are a, a’,
e, ¢'. Furthermore, since we do not need power series to describe the
deformation, the parameter space can be algebraicized.

In summary, the general versal deformation space of the algebra

K[xlxzxsl/(x%, x%, X1 X2 = X3, X1 X3, X2X3, xg)

consists of a one-dimensional semirigid non-commutative component and a
four-dimensional component which is the commutative versal deformation space
of the codimension 2 algebra

K[x, yl/x%, y?).
Completion and Algebraicization

We now take up the second stage of the construction — passing from the
tangent space to a complete local ring, and if possible, to an algebraic ring. We
fix the dimension n, and denote the representing ring of Theorem 1 by R, so that
the notation R, can be used as in Schlessinger’s paper. We take a basis
B',..., B’ to the tangent space constructed above, and choose r indeterminants
T,...,T.. We let

a=a+TB'+ - +T8

regarded as a structure constant tensor over R,=KI[T,,..., TJ(TY, i.e.
a; € C,(R,). For each 1 =3,4,... let S, =K[[T,..., T.]JJ(T), the truncated
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power series ring. The essential content of Theorem 1 in §2 is that we can
construct an inverse sequence Ri,.— R; of rings, each R; a quotient of S;, and a
sequence of elements a; € C,(R;) with the following properties:

(1) [+ 8 ®Rm Ri = .

(2) If A, is any quotient of S;, and ¥; is any structure constant tensor in €, (A;)
for which y; @4, K = a, then there is a homomorphism 6: R, — A; such that
vi= a; ®r, A; lies in the same orbit as y;. (The theorem itself would only give
the algebras B,,. We apply Theorem 1 of §1 to get the structure constant tensor
a;.)

DerINITION.  Letting R. be the inverse limit of this sequence of rings and a.
the inverse limit of the sequence of structure constants, we call Spec(R.) the
parameter space and B, the deformation algebra of B,.

We may write a. = a + 2., T,8' + Zjp-y TTT:B" + - -. If we want to attempt
a construction of R. and a., we do so by successively constructing R,., =
S;+1/Jp+1 and a,.1. Given R, and «,, we set

ap+1 = ap + T“BH',

lul=p

for the set of multi-indices u = (w1, ..., p,), T* = T4+ - - Tt Substituting in the
formula from Theorem 1,

<ap+l, ap+1> = 0 mOd TP‘H’

we have
05<a,+,,a,,+1>s<a,,a,,>+|; (a, B*)+(B*, a))T*.

Since {( , ) has n‘ components, this is a large system of equations.

From Schlessinger’s theorem on functors of Artin rings it is known that there
is a minimal ideal J**' for which this system is solvable.

In Appendix 1 we give the construction of this ideal in the particular situation
of deformations of Artin algebras. This too has been partially implemented for a
microcomputer. Modulo this ideal we may choose a set M of pu such that
{T. | u € M} forms a basis for the vector space of monomials of degree p
modulo J**', and we may assume that 8* =0 except for w € M. Foreachp € M
we get a system of equations for B*. Solving these equations for the various
components (B%)"* of B*, we then have

Ap+1 = p + 2 B“T“.

pEM
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Continuing in this way, we construct R. and a..

§4. Glueing

We now globalize the results in §1, producing data triples which determine the
global n-covers of a (commutative) integral scheme of finite type Y over K. By
discussing the cases of double, triple, and quadruple covers, we then show how
the information about deformations of algebras determined through the tech-
niques of §2 and §3 can be used to make this classification concrete.

Recall that our ground field K is algebraically closed, of characteristic zero or
prime to n. By definition of an integral scheme ([5], p. 82), Y has a covering by
affine open sets Y = Spec(A;), with A; a finitely-generated K-algebra which is
an integral domain. Let Oy be the structure sheaf of Y, with Oy (Y;) = A;. In this
very classical situation, the closed points of Y; can be identified with a subset of
an affine K-space which is closed and irreducible in the Zariski topology, and A;
can be identified with the regular functions on this algebraic set.

DEFINITION. A (global) n-cover of Oy is a sheaf ¥ of Oy-algebras which is a
locally free 0y-module of rank n.

We will follow the notational conventions in Hartshorne [5]. Elements of the
Oy (U)-algebras F(U) will be called sections of % over U. If V C U are open
sets, the restriction homomorphism from %(U) to #(V) will be denoted by pyv,
and if s € #(U) we will sometimes denote pyv(s)by s lv. Anelement s of #(Y)
will be called a global section. Suppose {U, }ic; is an open cover of Y, and % is a
sheaf on U, for each i € I such that for each i, j there is an isomorphism of
sheaves g@;: X ,unw;)% ,U.m,, such that:

(1) For each i, ¢, =id.

(2) For each i, j, k, ¢u = gp o on U N U, N U,.

Then there exists a unique sheaf ¥ on Y, together with isomorphisms
Y. Hy, = #, such that for each i, j, ¥ = ¢; © ¢. We will say that ¥ is obtained
by glueing the sheaves %, ([5], p. 69). Although this result is given in Hartshorne
[5] for sheaves of abelian groups, it is true as well for sheaves of sets.

We wish now to establish the global analogues of the two functors given in
Theorem 1'. We start first with a global n-cover ¥ of Oy, and construct a data
triple. Let {U;} be an open covering of Y such that each F(U)) is a free
Oy (U;)module. Let & (U)= E(%(U)) for UC U, be the sheaf of trace zero
modules of the Oy (U)-algebras F(U). Since F is a sheaf of Oy-algebras
we have Oy (U, N U,)-algebra isomorphisms
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@ii: p Ua(uinw)(g(u N=p Ui(anUi)g(le),

and these ¢, satisfy conditions (1) and (2). Since, by Lemma 3 of §1, the trace
zero module is preserved by algebra isomorphism, the system of functions {¢;} is
just what is needed to glue the sheaves &; together into a sheaf of Oy-modules
which is locally free of rank n —1.

Suppose now that & is any locally free sheaf of 0y-modules of rank n — 1, and
that €* is its dual. €* @ €* ® € is also a sheaf of Oy-modules, with restriction
functions pyv and transition functions ¢; induced from those of €. For any
U C U, define

(Hn-12€)(U) = H0-(E(U) C(ETQ ETQ &) (V).

The restriction functions pyv make this a sheaf of (affine algebraic) sets, and the
transition functions ¢, permit them to be glued into a sheaf ¥_,> &€ on Y.

Let us return to the case where &5 was obtained as the trace zero module of a
sheaf % of O,-algebras. For any i, and any U C U,, define

as; = a(F(U)) € H,-1(& (V).
If j is another index such that U C U, then clearly

¢;(as (U)) = as; (V).

Thus the collection as,(U;) of local sections of ¥ _,° &5 determines a global
section as(Y) of H_ i &s.

DerFINITION. A global n-cover data triple (Oy, €, ) consists of (i) the
structure of sheaf 0y of a commutative integral scheme Y of finite type, (ii) a
locally free 0y-module, and (jii) a global section a of #7_,&. They form a
category 9, in which the morphisms are given by triples (f, 6, (f, 8)) as in the
category &, of affine data triples.

THEOREM 3. The isomorphism classes of global n-covers is in one-to-one
correspondence with the isomorphism classes of data triples (Oy, &, o).

Proor. We construct an equivalence of categories. We have already defined
the functor

9’_)(0\’, %57 a’),

and now we reverse the process. Given a data triple (Oy, €, ), we let & be the
locally free sheaf Oy B €. Let {U,} be an open cover of Y such that €(U;) is a
free Oy (U;)-module. Let % be the sheaf of Oy, algebras on U, determined by
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a(U;). The transition functions
@i : Tuwnup(E(U)) = puwnun(E(U))
induce corresponding transition functions idé ¢; on the collection {#} of

sheaves of modules, which satisfy conditions (1) and (2) for glueing of sheaves.
Furthermore, since the corresponding induced isomorphisms

@ Halp vwnu(E(U))— Haalp uwnu(€(U))))

carry the local section (a |U,.) |U,.nui to (a |U,,) Iu,ﬂui, we conclude that each id @ ¢;
is actually an isomorphism of algebras. Thus there is a unique locally free sheaf
% of Oy-algebras of rank n obtained by glueing together the %,. We will denote
it by &,. From the local isomorphisms cited in Theorem 1', we see that the
functor ¥ —(¥s;) is a natural isomorphism, as is the fuunctor
(Ov, €, a)— (Oy, &5, as), where F =€, Q.E.D.

The interest in the global version of this theorem lies in the possibility of
constructing ¥>_(&) as a functor of €. X._,(&) can actually be endowed with
the structure of a (commutative) scheme over Y, but the structure of this scheme
varies as € varies. To make this clear, we will first review the classical case n =2
and then the case n =3 from Miranda [8] and Miranda and Teicher [9].

n =2: These are the classical double covers of algebraic geometry. € is a line
bundle over Y. Let U be an open set on which €(U) is free, and let ¢, be a basis
of the one-dimensional Oy (U)-module €(U). e;-e, = alie,+al e, giving a
minimal polynomial for e,. Since e, must have trace zero and e;-e,=
0-e,+1-e,, we must have aj, =0. Thus, a(U) is completely determined by a
morphism €(U)& €(U)— Oy (U). We can thus identify a(U) with an element
of (UY*Q &(U)*, which we write classically as €*(U). This construction
sheafifies, so we have the classical result that a double cover of Y is equivalent to
a line bundle € on Y and a global section of €7

n =3: We have taken all our covers over integral schemes, so each cover lies
generically in a fixed irreducible component of C,. For n = 3, there are two such
components, one corresponding to commutative algebras, and one generically
isomorphic to the algebra of upper triangular matrices.

In Miranda [8], he identifies global sections of (&) lying in the commutative
component with global sections of the sheaf S;(%), the symmetric algebra on €
generated by €Q € € modulo all commutativity relations on the tensor
product, a space of dimension four. In Miranda and Teicher [9] they identify the
global sections of the non-commutative algebras with global sections of €*.
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n=4: The semirigid family. One of the five components of Cj is that
containing the semirigid family of algebras, which appeared in the example of §3
as the non-commutative component of the deformation space of K[x, y}/(x?, y*).
We will construct a parametrization of this component W, that is to say, we will
find a birationally equivalent scheme N whose structure is easily described. C3,
can be regarded as a subscheme of V5@ V& Vo. Furthermore, as we showed
in Lemma 4, each trace zero structure constant tensor a is completely
determined by its projection @ onto V3® V#® V,. To simplify notation we
will denote V, by E. Let s, be the unique point of W corresponding to @ = 0. Let
Gr,(E) denote the Grossmanian variety of d-dimensional subspaces of E. An
examination of the deformation chart in Gabriel [2] shows that at every other
point of W, we have a morphism L: W— Gr,(E), such that L{a) is the
one-dimensional subspace of E corresponding to the radical squared, J ? in the
multiplication determined by a. L(a) is also in the kernel of multiplication from
left and right, so that

@ €(E/L(a))* ®(E/L(a))* @ L(a).

Conversely, for any L € Gr,(E), every tensor in (E/L)*Q(E/L)* Q L deter-
mines an associative multiplication structure, since J° = 0 and thus the associativ-
ity relations are void. Let N be the fiber bundle over Gr(E)—=P* with affine
fiber

F(L)=(E/L)*Q(E/IL)*QL

and let N, be the zero section. Then W —{Wg}=> N — N,. Furthermore, the
embedding of N—E*®@ E*® E induced by the embedding (E/L)*— E*
carries N, to W,. Thus the birational correspondence N— W is in fact a
morphism, blowing up the point W to P°. The dimension of N, and thus of W, is
dimP* + (dim(E/L)Y dim L =6. Since W contains a one-parameter family of
orbits, each orbit has dimension 5. The automorphism group 4(K) has dimen-
sion 9, so that the stabilizer has dimension 4, as calculated in the literature. For a
fixed element L of Gr,(E), the affine space (E/L)*®(E/L)*®L can be
identified with 2X2 quadratic forms M, with automorphisms Q acting by
TOMA. If
A B
w=[¢ o]

then the orbits can be parameterized by the invariant (B — CY/AD — BC for
AD — BC#0.
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In order to sheafify this construction, we define a fiber bundle N'(%) whose
fiber at a closed point of Y is isomorphic to N. For U C U, a section B(U) of
N(E(U)) is an element (L(B), B)(U) with L(B)(U)€E Gr,($(U)) and

B(U)E (E(U)/L(B)U))* @ (E(U)L(B)U))*Q L(B)U).
The canonical mapping B(U)—a(U)EBU)Q E(U)*Q €(U) induces a
birational morphism from N(€) onto W(&), the component of Ho_(€)
containing the semirigid family.

n=4: The Kronecker component. This is a direct generalization of the
non-commutative component in the n = 3 case given in Miranda and Teicher [9].
For any n, the Kronecker algebra of dimension n is the algebra with two
idempotents ¢, and e,, and a square zero radical J such that J = e,Je,. In the
language of quivers this would be represented by two vertices and n —2 arrows
from one to the other. With respect to multiplication from the left, we have
Tr(p(e;))=n —1, Tr(p(e;)) =1 and Tr(p(v))=0 for all v €J. Thus the trace
zero module E is generated by J and by w,=e;—(n —1)e,. The kernel of
multiplication of J by E from the left is J, and for any element w of E, we have
w = tw, (mod J) if and only if w - v = tv for any v € J. Conversely, if E = Vo,
then any non-zero element s of E* determines a multiplication structure on
E = V, by setting J =ker(s), and defining

vev'=0 for v,v' €J,

w-p=s(w)v forvelJ, weeE,
v-w=-—s(w)(n—1) forvelJ, weEE,
wew=—s(w)(n—2)w+sw)(n—1e, forwgl

The formula for w” is a direct result of the orthogonality of the two semi-
idempotents

s(w)ne; = w + s(w)(n —1)e,,
—s(w)ne; = w — s(w)e,.

When s =0, then the multiplication reduces to that of the n-fold point. The
Kronecker algebra has no deformations and no specializations except the n-fold
point, so the Kronecker component of C,, is isomorphic to E*. If we sheafify we
find that the Kronecker component of ¥_(%) is just €*, as in the n = 3 case.

In general, in all the orbits of C5 which we have calculated so far, we find (1)
that resolving the singularities of the closure of the orbit produces a fiber bundle
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over the flag variety for the flag € CJCJ*---, (2) that the structure of the
general fiber in this bundle is a reflection of the structure of the general algebra
in the orbit, and (3) that this bundle can be sheafified in a natural way.

§5. Geometric n-covers

We turn to the last topic in this work, a geometric treatment of global
n-covers. We have worked until now in the framework of conventional modern
algebraic geometry, in which the spectrum always refers to the prime spectrum.
We would like now to switch to the context of geometry on affine rings as given
in the work of Artin and Schelter [1] and to work with the maximal spectrum.
Although this is denoted in the literature on non-commutative algebraic
geometry by Spec, we will denote it by Max Spec to avoid inconsistencies of
notation within this paper.

We give a geometric version of the definition of an n-cover, first in the affine
and then in the global case. We recall that an affine K-algebra is one which is
finitely generated as an algebra over K. In the commutative case it is said to be of
finite type over K.

DerFniTION.  Let f: A — B be an n-cover of a commutative affine integral
domain A, as defined in §1. The corresponding morphism of maximal spectra

f: Max Spec(B)— Max Spec(A)
will be called an affine n-cover.

REMARK. Since the algebra homomorphism f: A— B maps A into the
center of B, it is an extension ([1], p. 290), and thus the correspondence between
the maximal spectra is actually a function.

DerFINITION.  Let X = Spec(B), and Y = Spec(A). The X/Y-topology on X
has as its open sets the sets f~'(U) for U open in Y.

RemARK. Since B is a finitely generated module over A, the closed subsets in
the X/Y topology are finite unions of Zariski closed subsets of Spec(B).

ExamrLE 3. Let A = K[t] be a polynomial ring in one variable, and let B be
an algebra of rank 5 over A, whose general fiber is isomorphic to My(K) X K|
and whose special fiber at t =0 is the five-dimensional algebra with two
idempotents e,, e, and two elements p € e,Je; and o € e, Je, satisfying a relation
po =0. (This algebra is designated as A% in [3].) For those familiar with
representation theory, it has a quiver
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and J? is generated by the product op.

Over the general point of MaxSpec(Ar), MaxSpec(B) has two points,
corresponding to M(K) and K. At ¢t =0, the point corresponding to M,(K)
splits into what Artin and Schelter call a “cluster of associated points”, in this
case corresponding to the two idempotents e, and e,. Let W be the Zariski
irreducible subset of Max Spec(B) corresponding to the factor K. Then W
intersects this cluster at the point corresponding to the idempotent e,.

N~

-————————-('}____—-——-—'

DEerINITION.  Let Y be a commutative integeral scheme of finite type, and ¥ a
global n-cover. Let {U.} be an open cover of Y over which each F(U,) is free.
Let X; = Max Spec(U, ) for each i. Each X; is a sheaf of topological spaces with
respect to two topologies, the Zariski topology and the X;/U,; topology. The
glueing algebra automorphisms ¢; induce homomorphisms of topological spaces
with respect to each of these topologies. Therefore the X; glue together a
topological space X with two topologies and a sheaf structure over Y. We can
define a structure sheaf Ox(f'(U))= F(U) in the X/Y-topology.

ExampLE 4. Consider a global n-cover % which lies generically in the
Kronecker component, and the corresponding space X. The generic fiber of
p: X—Y has two points, corresponding to the two idempotents of the
Kronecker algebra. The branch locus where these idempotents coalesce corres-
ponds to the points where the algebra becomes local. This occurs when the
section & corresponding to f, — f; goes to infinity, or, correspondingly, where the
section s € €* defining the multiplication goes to zero.

Appendix 1

We wish to describe the procedure for constructing the parameter space to the
versal deformation space, once the tangent space is known. The general
procedure is given in Schiessinger’s paper. We will make a slight adjustment in
notation: the representing ring for C, will be denoted simply by R (instead of
R.) and we set
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Rz = K[Tl,.. .y T,,]/(Tl,.. .y T,.)z

where T,,..., Ty is a dual basis to the tangent space. We let a, be the tensor
corresponding to the deformation over R, given by

N
XiX; = 2 (a:;'*' '=21 b:;”rl) X

where B' = (b}) is the structure constant tensor of a representative of the basis
element corresponding to T,. For any element v of the tangent space, substitut-
ing T,(v) for T, I =1,..., N will give a representative of v.

We set S =K|[[T,,..., Tw]], [ =(Ty,..., Tn). Set J,= I so that R,=S/J..
We now proceed by induction. We want to define J; to be the largest ideal such
that J, D J, D I’, and o, lifts to a tensor a; over R; = S/J;. In general, assume o
and J, have already been defined, we let Ji,; be the largest ideal such that
JDJ DI and o lifts to ay,y over Riy = S/J.

Schlessinger proves that such a J; exists for each . We then set R.=lim R,
and let a. be the corresponding limit of the a.

Since all the equations defining the representing ring are quadratic, we already
have a great deal of information by the time we have constructed Rs, and we will
describe explicitly how this is done.

In constructing the tangent space we took a general deformation tensor
B=(bforij=1,...,n—1, k=0,...,n—1. Letting the bj be variables, we
generated two sets of equations: one, which we will call (*), consisted of
homogeneous equations obtained from (e, B) + (B, a)=0. The second set, (*x),
was also homogeneous, derived from the automorphism relations. Since both
sets were homogeneous, the solution space was a vector space, with certain of
the parameters b serving as free parameters T,..., Tx. Assuming that this
calculation has already been carried out, we cease to think of the bj; as variables
and consider them linear functions of the T;. In general each bf is either 0, + T,
or — T,, but occasionally we get more complicated linear combinations of the
free parameters.

We now write af+ bf+ df, for the general element of the tensor a;, where df
is a variable. We want to calculate the d% as quadratic functions of Tj,..., Tx.
We no longer have to deal with eliminating automorphisms; that has already
been done. Instead we get a non-homogeneous version (*)' of the system ():

(as, a5 =0 (mod I’), i.e.
(a+B+8a+p+8)=0(mod I).
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We already know that the order term {a, @) and the first order term (a, B) +
(B, a) are both zero. We must discover when the second order term

(B, B) + (e, 8)+(8,a)=0 (mod I).
We thus have the non-homogeneous system

(a,8)+(8,a)= —(B,B).

Jy is the largest ideal for which this system is consistent. We begin solving the
right-hand side and whenever we uncover an equation 0 =X g;T.T; we add this
quadratic expression in the free parameters to the ideal J;, simplifying subse-
quent equations accordingly. We can make a further simplification. We need to
find only one solution to the system. From any particular solution we can get
many other solutions by adding solutions to the homogeneous system (*). The
solution we found to (*) and (**) simultaneously is a solution to (*). Suppose b¥
was one of the variables we chose to be a free variable T,.

We can create a solution to (*) by substituting — 8% for T, and 0 for every
other free parameter T,. Thus, whenever we have a solution (8) to (*)' we will be
able to replace it by a solution (8') in which 85=0. This can be done
independently for each of T,,..., T.. Thus we may simplify our system at the
outset by assuming 8% =0 for those i, j, p for which b% was chosen as a free
parameter. We could cut down the number of variables sill further if we would
first find the general solution of (*) and only add the equations for (xx)
afterwards. However, this would increase the calculation time in the computa-
tion of the tangent space. With a little experimentation it should be possible to
determine which way is better.

Appendix 2

In the case where the algebra being deformed has several idempotents, it is
possible to reduce the number of equations to be solved. In a recent preprint [10]
the author has shown that any basis which is partitioned into blocks by a Peirce
decomposition can be deformed to a basis with the same property. Similarly it is
shown that matrix units can be deformed to matrix units. The deformation of the
matrix units allows us to do a sort of Morita reduction to a basic algebra. To
construct the deformation of the basic algebra, we can restrict ourselves to
deformations of the radical which preserve the Peirce decomposition. The only
infinitesimal deformations by which we must divide are deformations I+ eM
when M preserves the Peirce decomposition. This provides a considerable
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reduction in the number of equations to be considered. With this reduction,
deformations of algebras with 3 or 4 idempotents for dimensions up to around
fifteen can probably be calculated with the currently operating program.
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